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Abstract. Card-based cryptography provides simple and practicable
protocols for performing secure multi-party computation (MPC) with just
a deck of cards. For the sake of simplicity, this is often done using cards
with only two symbols, e.g., & and Q. Within this paper, we also target
the setting where all cards carry distinct symbols, catering for use-cases
with commonly available standard decks and a weaker indistinguishability
assumption. As of yet, the literature provides for only three protocols and
no proofs for non-trivial lower bounds on the number of cards. As such
complex proofs (handling very large combinatorial state spaces) tend
to be involved and error-prone, we propose using formal verification for
finding protocols and proving lower bounds. In this paper, we employ the
technique of software bounded model checking (SBMC), which reduces
the problem to a bounded state space, which is automatically searched
exhaustively using a SAT solver as a backend.

Our contribution is threefold: (a) We identify two protocols for converting
between different bit encodings with overlapping bases, and then show
them to be card-minimal. This completes the picture of tight lower bounds
on the number of cards with respect to runtime behavior and shuffle
properties of conversion protocols. For computing AND, we show that there
is no protocol with finite runtime using four cards with distinguishable
symbols and fixed output encoding, and give a four-card protocol with an
expected finite runtime using only random cuts. (b) We provide a general
translation of proofs for lower bounds to a bounded model checking
framework for automatically finding card- and run-minimal (i.e., the
protocol has a run of minimal length) protocols and to give additional
confidence in lower bounds. We apply this to validate our method and,
as an example, confirm our new AND protocol to have its shortest run
for protocols using this number of cards. (c) We extend our method
to also handle the case of decks on symbols & and O, where we show
run-minimality for two AND protocols from the literature.

* This is an authors’ manuscript version of an article to appear in “New Generation
Computing”, and constitutes an extended version of a proceedings paper with the same
title that appeared at ASTACRYPT 2019 with DOI 10.1007/978-3-030-34578-5_18
[KSK19]. We replaced the proof sketch of Theorems 1 and 2 with a full formal version.
Moreover, we adapted our verification tool to handle more general decks, which allows
us to additionally show run-minimality of two-color deck AND protocols from the
literature. These new results are mainly described in Sections 8 and 9.
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1 Introduction

Card-based cryptographic protocols allow to perform secure multi-party com-
putation (MPC), i.e., jointly computing a function while not revealing more
information about each individual input than absolutely necessary, with just
a (regular) deck of playing cards, as long as they have indistinguishable backs.
Let us start with an example. Assume that Alice and Bob meet in a bar and
spend the evening together. After quite some chat, they would like to find out
whether to have a second date. They are faced with the following problem: In
case only one of them likes to meet again, this would cause an uncomfortable
embarrassment, if he or she is the first to come out.! Fortunately, Alice is a
notable cryptographer and likes card games, so she has with her a standard deck
of cards. She remembers the protocol by Niemi and Renvall [NR99] for computing
the AND function of two bits, here for outputting “yes”, if both players share
this mutual interest, and “no” otherwise. Using this MPC protocol hides the
input of the respective other player, unless it is obvious from their own input
and output, hence hiding a “yes”-choice given of only one player, from the other.

In order to get a feeling for how such card-based protocols work, let us
introduce the said protocol by Niemi and Renvall. The protocol uses five cards
with distinguishable symbols, which we denote — for simplicity? — as
and . It is essential that the cards’ backs are indistinguishable, such that when
they are put face-down on the table, the only thing observable is .
With these cards, the two players can encode a commitment to a bit (yes or no)

by the order of two cards , 1,7 €{1,...,5} (with i # j) via the encoding

~— . ] 0, if¢<y,
1= {1, if i > j.
Alice inputs her bit by putting the cards face-down and in the respective
order on the table (she puts for input 0, and for input 1), while Bob
does the same using his cards . We need an additional helper-card, here a
7 which is put to the left of the two players’ cards.

The protocol starts by swapping Alice’s second card with Bob’s first card
in the card sequence (pile) on the table. The resulting card configuration has
an interesting property, namely that the order of the cards 1] and |4] in this
sequence already encodes the output of the protocol, i.e., it reads if the
output is 1, and otherwise. Hence, by securely removing the cards |2| and

! This is known as the “dating problem”.
2 Alice and Bob in the story might, e.g., use 7, 8, 9, 10, and a queen with any symbol.



(which is explained below), one directly obtains the output. We see this by
inspecting all possible cases:

Bits  Input sequence After swap Removing —I—
(0,0) B x x [
(0,1) B4 x x
(1,0) 6 x x 14
(1,1) BEICINES

We can remove the cards (2] and (3}, while keeping the relative order of all cards
in the sequence intact, by cutting the cards, i.e., rotating the sequence by a
random offset which is unknown to the players. We can then securely turn the
first card and remove it in case it is a |2] or a . Due to the cut, the turned
card is random and hence does not reveal anything about the inputs. When both
cards are removed, we reach a configuration where |5| is the first card by the
same procedure where the two remaining cards encode the AND result. Here,
the |5| played the crucial role of a separator that keeps the relative order of the
remaining cards — starting from the separator — intact, when doing a random
cut. (A formal version of this protocol is given in Protocol 2 and Figure 7.)

In this paper, we are interested in whether we can do away with the helping
card , and whether there are simpler protocols. Moreover, in order to handle
the increasing combinatorial state space (relative to protocols on decks of just &
and Q), we introduce formal verification to the field of card-based cryptography.

1.1 Secure Multiparty Computation with Cards

In combining different protocols, one can do much more than just computing the
AND function. For example, it is possible to compute arbitrary Boolean circuits
by combining the well-known fact that any circuit can be expressed using only
NOT and AND gates, with a method to duplicate the physically encoded bit in
case of forking wires, which we make explicit by a COPY gate. In the encoding
above, NOT simply inverts the order of the two cards, and a COPY protocol is
given, e.g., by Mizuki [M16]. Using this setup, we can do general MPC for any
function without needing to trust a possibly corrupted computer.

A particular advantage of protocols using physical assumptions is that they can
provide a bridge to reality. Examples are given by Glaser, Barak, and Goldston
as well as Fisch, Freund, and Naor, who give a protocol for proving in zero-
knowledge that a nuclear warhead (to be disarmed due to an international treaty)
conforms to a prescribed template, without giving away anything about its
internal design [GBG14; FFN14]. In our setting of cryptography with cards, this
bridge is used if the cryptographic protocol is embedded in a real card game, e.g.,
to prevent cheating®. Here, using computers is not only cumbersome, but there

3 As an example, in a Duplicate Bridge tournament, one might prove that all sessions
are handed the same cards, eliminating the need of a trusted dealer (no pun intended).



is no guarantee that the card sequence on a player’s hand is the one he or she or
he inputs into the software, hence we have no bridge to the physical world.

Another application of such protocols is to explain MPC in an interesting and
motivating way to students in cryptography lectures. Card-based cryptography
tries to find protocols for the above-mentioned AND and COPY functionalities
which are card-minimal, simple and practicable. For simplicity, many protocols
in card-based cryptography work with specially constructed decks, e.g., of only
the two symbols & and Q. This is easy for explanation, and there are nice and
easily describable protocols, such as the five-card trick by den Boer [dB89] and
the six-card AND protocol by Mizuki and Sone [MS09].

However, the setting where all cards are distinguishable, as described above,
has several advantages. Firstly, we assume little about the indistinguishability
of cards, which leads to stronger security guarantees. (This is closer to the
indistinguishable version of tamper-evident seals, e.g., scratch-off cards, by Moran
and Naor [MN10].) We only need the backs (or envelopes wrapping the cards,
if one wishes) to be indistinguishable. Secondly, these standard decks are more
commonly available, in contrast to constructed decks. If one were to use standard
decks for the protocols above, they would need multiple copies of the same card.
Thirdly, this setting may lead to protocols using less cards than the optimal ones
in the two-color deck setting. In fact, as our paper shows, one may use less cards
than in the two-color deck setting. For example, our new four-card Las Vegas
AND protocol presented in Section 5 uses only a very basic, practicable shuffling
mechanism, namely random cuts, and uses one card less than the provably card-
minimal Las Vegas AND protocol (restricted to certain types of practical shuffles)
in the two-color deck setting. As of yet, there has only been little research in this
direction, with [NR99; M16] being the only works that consider the setting where
all cards have distinguishable symbols, called “standard deck” setting. Nothing is
known about non-trivial lower bounds on the number of cards, which is likely due
to the large state space, as there are many more distinguishable card re-orderings
compared to the two-color case.

Within this paper, our interest is to find an automatic way of constructing
compact card-based protocols which are secure and correct, based on only the
two standard operations turn and shuffle, given the desired number of cards.
We exploit the observation that, to the best of our knowledge, all findings in
the literature employ only protocols with runs of comparatively small length
using only a small number of cards. Based on the hypothesis that we may
always find some number n which is greater than or equal to any run-minimal
card-protocol, we apply the automatic off-the-shelf formal program-verification
technique software bounded model checking (SBMC) [BCC*99]. This technique
allows, given such a bound n, to encode a program verification task into a
decidable set of logical equations, which can then be solved by a SAT or an
SMT solver. In this work, we propose an automatic method based on SBMC
that, given the desired numbers of cards and protocol length, either constructs
such a protocol if and only if one exists, or proves the underlying SAT formula
to be unsatisfiable, i.e., shows that no such protocol exists. Based thereon, we



propose that the cumbersome and error-prone task of finding such protocols or
proving their non-existence by hand may be supported or complemented by such
an automatic approach which is flexibly adaptable to a variety of card-based
protocols and desired restrictions.

Prior to our work, it was not yet clear which role the input encoding plays
when devising new protocols. This is the question on whether it can make a
difference regarding the possibility of a protocol if we provide, e.g., to Alice
and to Bob, or to Alice and to Bob. We provide an analysis of
this question, showing that with certain restrictions, there is a relatively large
freedom in choosing the input (and/or output) bases. This is a useful prerequisite
in proving the impossibility of a protocol with a given number of cards.

1.2 Contribution

Our contribution consists in providing interesting new protocols and impossibility
results, as well as a fully automatic method based on formal verification to
support such findings. The specific advances therein are the following (cf. also
Table 1 for a comparison to the literature):

(1) A four-card AND protocol in the standard deck setting, improving upon the
work by Niemi and Renvall [NR99] by one card, and reaching the theoretical
minimum on the number of cards. W.r.t. shuffling, this protocol only uses
an expected number of 6 random cuts, compared to 7.5 random cuts in a
(shortened) variant of Niemi and Renvall [NR99]. Additionally, the protocol
has a natural interpretation and the fact that it uses only random cuts makes
it particularly easy to implement in an actively secure way [KW20].

(2) We show that under certain conditions the cards for encoding input or output
can be chosen freely. For one-bit output protocols and if five or more cards
are available, we can freely choose both input and output bases by only
extending the protocol by expected three shuffle and three turn steps. For
this matter, we identify two protocols for converting a bit encoding if the
new encoding shares one card with the old one.

(3) We show that there is no finite-runtime protocol for converting between bases
with non-empty intersection using four cards. Moreover, there cannot be a
finite-runtime AND protocol with four cards if we fix the basis in advance.

(4) We introduce formal verification to card-based cryptography by providing a
technique which automatically finds new protocols using as few as possible
operations and searches for lowest bounds on card-minimal protocols.

(5) We extend this technique to more general decks, and show two AND protocols
in the two-color (or two-symbol) deck setting, i.e., where the deck constitutes
a multiset of cards on symbols & and O, to be run-minimal. Finally, we
employ our formal verification method to give a formal guarantee that we
may safely reduce the maximal permutation set size and thereby optimize
the running time for our protocol-finding technique in Section 8. This is due
to the fact that in the two-color setting the number of possible sequences in
a protocol state may be significantly smaller than the number of possible
permutations on the deck.



Table 1. Minimum number of cards required by AND and basis conversion protocols,
subject to the running time and shuffle restrictions specified in the first two columns.
Note that random cuts are a subclass of uniform closed shuffles.

Running Time Shuffle Restr. ‘ #Cards Protocol Lower Bound
AND PRrROTOCOLS:

Las Vegas random cuts 4 Theorem 3 — (trivial)
finite -

it niform closed |} =5 <8 [M16, Sect. 3.4]  Theorem 2

DisJOINT BASIS CONVERT PROTOCOLS:

finite uniform closed ‘ 4 [M16, Sect. 3.2] - (trivial)

OVERLAPPING BAsis CONVERT PROTOCOLS:

Las Vegas random cuts 3 Theorem 4 — (trivial)
finite -
finite uniform closed } o Theorem 5 Theorem 1

# Lower bound result only holds for fixed output basis, flexible case is still open.

1.3 Related Work

The feasibility of card-based cryptographic MPC is due to den Boer [dB89],
Crépeau and Kilian [CK93], and Niemi and Renvall [NR98], with a formal model
given by Mizuki and Shizuya [MS14]. The only two papers looking at standard
deck solutions are by Niemi and Renvall [NR99] and Mizuki [M16]. Lower bounds
on card-based cryptographic protocols are given by Koch, Walzer, and Hartel
[KWH15], Kastner et al. [KKW117], and Koch [K18] for the two-color deck setting.
The card-minimal protocol for this setting, using only practicable (i.e., uniform
closed) shuffles, is given by Abe et al. [AHM 18] and uses five cards. The state
trees used for protocols in this paper are devised by Koch, Walzer, and Hartel
[KWH15] and Kastner et al. [KKW'17].

To the best of our knowledge, this is the first work which applies formal
methods to the field of card-based cryptography. However, a large range of research
has been done using formal methods in the more general field of secure two-party
and multiparty computations. This can be clustered into either analyzing security
protocols given as high-level, abstract (and usually idealized) models, or program-
based approaches targeting real(istic) protocol (software) implementations. Avalle,
Pironti, and Sisto [APS14] further structure this into the two main approaches
of automated model extraction and automated code generation. We refer the
interested reader to overviews as given by Blanchet [B12] or Avalle, Pironti, and
Sisto, and only go into a few selected works for which we identified closer links to
our approach, e.g., using software bounded model checking (SBMC), SAT solvers
on real(istic) protocol implementations, or relating in the analyzed security
model. Standard cryptographic assumptions using lower-level computational
models are — albeit more realistic — usually harder to formalize and automate.
One notable line of research is CBMC-GC [FHK™'14] which builds on top of



the tool CBMC [CKL04]. It uses SBMC in a compiler framework translating
secure computations of ANSI C programs into an optimized Boolean circuit
which can subsequently be implemented securely utilizing the garbled circuit
approach. Another similar setting to ours is analyzed by Rastogi, Swamy, and
Hicks [RSH19], who also assume an “honest-but-curious” attacker model. Therein,
a domain-specific language is built on top of the F* language, a full-featured,
verification-oriented, effectful programming language by Swamy et al. [SHK ™ 16].
Swamy et al. then implement MPC programs with enabled formal verification
provided by the semantics of the language.

1.4 Outline

We give the computational model of card-based protocols, security definitions, etc.
and the necessary preliminaries as well as a basic setup for software bounded model
checking in Section 2. Section 3 discusses which freedom one has when choosing
the specific cards for encoding inputs and outputs to card-based protocols and
introduces a formal relabeling operation. We give lower bounds on the number
of cards for AND and basis-conversion protocols in Section 4. A four-card Las
Vegas AND protocol and two basis-conversion protocols are presented in Section 5
and Section 6, respectively. Section 7 gives results from applying our formal
verification setup based on SBMC to our new AND protocol. In Sections 8 and 9,
we describe our new results for the two-color deck case.

2 Preliminaries

In this section, we first formally introduce card-based protocols with their com-
putational model (including some basic required notions), a convenient formal
protocol representation, a suitable security notion, and the formal requirements
for proving lower bounds. Secondly, we introduce our applied formal technique
called software bounded model checking, on which, thirdly, we establish our
general technique for automatically finding card- and run-minimal protocols.

2.1 Card-Based Protocols

Formally, a deck D of cards is a multiset over a (deck) alphabet or symbol set
Y. We denote multisets by [-], e.g., [©, 0, &, &] is a deck over {O, &}. In this
paper, except for Sections 8 and 9, we focus mainly on decks D = [1,...,n],
n € N, where each symbol occurs exactly once. Following Mizuki [M16], we call
these decks standard decks, because decks of common card games are a good
representation of such formal decks.

A card that is lying on a table (as usual in card-based protocols) can have
two orientations, namely face-up (showing the symbol of the card), or face-down.
A special back symbol ‘7’ that is not part of X' represents what is visible about a
card that is turned face-down. In this way, we can describe a card lying on the
table by a fraction symbol 7, where exactly one of a and b is ‘?”, and the other is



a symbol from Y. Here, a represents part that is visible from the card when it lies
down, and hence 7 is a face-down card if @ = 7, and a face-up card if a € X. As
card-based protocols usually involve some turning-over of the cards, this status
will likely change during a protocol, causing the numerator and denominator to
be swapped.

Card-based protocols then proceed on sequences of such cards (o, ..., ap)|)
where all cards from the deck D are lying on the table as just described and in
the given order. The visible sequence of such a sequence then arises by just taking
the “visible” numerator of all cards. For example, if the sequence is (%, %7 %, %),
the corresponding visible sequence of the cards is (7,7, &, 7). The sequence trace
of a finite protocol run, and analogously its visible sequence trace, is then the
sequence of all card sequences and visible sequences, respectively, as they arise

during the run. Let Squ denote the set of sequences on deck D.

In the following we will often just use the symbol sequence that contains only
the card symbols ((©, 0, &, &) in the example above) as a shorthand for the
corresponding face-down cards. This is due to Kastner et al. [KKW*17, Cor. 2
and Lem. 4], who showed that it does not increase the computational power of
card-based protocols to leave cards face-up longer than necessary, and that one
can safely assume that any face-down cards that are turned over during a step in
the protocol are directly turned back after learning its symbol.

For encoding a bit, we additionally assume a linear order on the card symbols
in X, which is the usual order on N for standard decks, and & < © for simple
two-element decks. Two face-down cards with distinct symbols s1, s € X' then
encode a bit via the following encoding rule introduced by Niemi and Renvall
[NR99:

. {0, if 51 < s9,

5182 =

1, if s1 > 9.
Card-based protocols proceed by mainly two actions on the sequence or pile of
cards: We can introduce uncertainty (about which card is which) by shuffling
them in arbitrary or in certain controlled ways, e.g., by cutting the cards in
quick succession, so that players do not know which card ended up where in the
card sequence (or pile). Slightly more formal, a (uniform) shuffle is specified by
a permutation set, from which one element is drawn uniformly at random and
applied to the cards, without the players learning which one it was. Secondly, we

may turn over cards and publicly learn their symbol, and act on the basis of this
information. Moreover, we may deterministically permute the cards.

A protocol computes a Boolean function f: {0,1}? — {0, 1} if the possible
start sequences, corresponding to the player inputs b € {0,1}2, do encode these
inputs as described above, and that the cards that are declared to contain the
output value upon termination of the protocol, do encode the output value
o= f(b) for each respective input b € {0,1}* as described above. A more formal
definition in terms of the tree representation introduced in Section 2.1 is given at
the end of that section.



Permutations and Groups. Let S,, denote the symmetric group on {1,...,n}.
For elements z1,...,xr € {1,...,n} the cycle (z1 x2 ... xy) is the cyclic
permutation 7 with m(x;) = x,41 for 1 <i < k, m(xg) = 1 and 7(z) = x for all
2 not occurring in the cycle. Every permutation can be written as a composition
of pairwise disjoint cycles. For example, (1 3 2)(4 5) maps 1 — 3,3 — 2,2 —
1,4 — 5, and 5 +— 4. The identity permutation is denoted as id.

Given permutations 7y, ..., 7, € Sy, (71, ..., 7) denotes the group generated
by 71,..., 7. A shuffle is a random cut if its permutation set is the group (w) =
{70, ..., w!=1} generated by a single element 7 which is a cycle (x1 zo ... x7).

A shuffle is called a random bisection cut if its permutation set is generated
by a m which is the composition of pairwise disjoint cycles of length 2. Finally,
an Si-shuffle is a shuffle with permutation set .Sj.

Computational Model and Protocol State Tree Representation. For our
formal descriptions, we make heavy use of the KWH trees introduced by Koch,
Walzer, and Hértel [KWH15] and shown to be equivalent to the computational
model by Mizuki and Shizuya [MS14; MS17] in the work by Kastner et al.
[KKW*17]. For this matter, let us first describe what a state during a run of a
card-based protocols is. We start by an example, namely the state of a protocol
in the very beginning, i.e., after the players have put their cards encoding their
inputs on the table:

1234 Xoo
1243 Xo1
2134 X1
2143 X1,

As mentioned above, we resort to only write symbol sequences instead of full card
sequences. Each line in the state as depicted by the above boxed information rows
describes a card sequence that is possible at this point in time in the protocol,
together with a certain type of polynomial in the variables X, Xo1, X109, X11.
For example, the first line of the state can be read as “the sequence (%, %, %, %)
lies at the table with the symbolic probability X", i.e., with the probability that
(0,0) is the input of the protocol (which is left as a variable, instead of a concrete
value, as the input distribution can be arbitrary). Note that 12, and 34 encode 0
as required for input (0,0) and that the order of the rows is of no significance
in the above depiction. We capture the notion of a state more formally in the

following definition:

Definition 1 (State). Let D be a deck of a protocol P computing a Boolean
function f: {0,112 — {0,1}. A state p of P is a map pu: Seq” — X, where
Xy denotes the polynomials over the variables Xy for b € {0,1}2 of the form
Ebe{0,1}2 Bo Xy, for By € [0,1] C R, and p(s) for s € Seq” is interpreted as the
probability that s is the actual sequence on the table, in terms of the symbolic
probabilities on the inputs.

Defined this way, the boxes drawn throughout the paper are just depictions of
such a (state) map, i.e., we just write down all sequences s € Seq® that are not



assigned probability 0, and annotate it to their right with the polynomial u(s).
(An alternative characterization of a state is given by Koch [K19, Def. 7.1].)
Every standard-deck protocol starts by a state as above:

1234 Xoo
1243 Xo1
2134 Xy
2143 X1,

but we eventually add further cards (7 @7 ...) if the deck is larger to the right
of the players bits. The state (or KWH) tree of a protocol is then a directed tree
where the nodes are states as above, with annotations at the outgoing edges of
each state, specifying the action that is performed next. Let p be the state with
the outgoing annotation, then the possible actions are defined as:

1243 1/5(Xoo + Xo1 + X10)
2134 16X, : L
2143 15hX1, g Y e (T (s1))

1234 Xoo + Xo1 s1ps1)
1243 X1 s
2134 X11 Se ﬂ(Se)
(shuffle, {id, (3 4)}) (shuffle, IT)
A A
1234 1/5(Xoo + Xo1 + X10) 81 Y Y per (m 1 (sh))

Fig. 1. A shuffle operation, given by example (left), and via the general rule (right).

1. (shuffle, IT) leads to a u" as in Figure 1, where IT C S|p| is a permutation set.

2. (turn,T) branches the tree into states u, for each observation v possible by
revealing the cards at positions from the set T'C {1,...,|D|}, as in Figure 2.
1, contains the sequences from p which are compatible with the observation
v. For each sequence s compatible with v, we have p,(s) = u(s)/ Pr[v], where
Pr[v] € (0, 1] is the probability of observing v. Note that we omit the implicit
operation to turn the card back face-down, as motivated above.

3. (perm, ) permutes the sequences of u according to .

4. (result, p1,p2) stops the computation and returns the cards at py, p2 as output.

A protocol computes a Boolean function f: {0,1}? — {0, 1} if the start state
(tree root) encodes each b € {0,1}? in the first four cards (the remaining cards
being at fixed positions), and in the leaf nodes of the protocol’s state tree, it
holds for the positions given by the result operation that the cards at these
positions encode a value o € {0,1} if all X; occurring in pu(s) for sequence s
satisfy f(i) = o (Correctness).

10



51 pi(s1)

8;2 ﬁ(Se)

 (turn, T')
S1,1 1/Pr[v1] : M(81,1) Sn,1 1/Pr[v"] 'M(Sn,1)
$1,6, YPrfwr] - p(S1,61) Snt  YPrva]  H(Sn.e,)
Fig. 2. A turn operation. Here, v1, ..., vy, are the possible observation by turning the
cards at positions in T'. For each i € {1,...,n} the s;1,...,s; ¢, are the sequences from
S1,...,8¢ which are compatible with v;. Note that in secure protocols, the probability

of observing v;, denoted as Pr[v;], is constant.

We say that a protocol has finite runtime if its tree is finite. It is a Las Vegas
protocol, if it is not finite runtime, but the expected length of any path in its
tree, i.e., the expected value of the length of an arbitrary descending path in the
tree starting from the root (as a random variable, where the randomness is in
the choice of the path), is finite. Note that while we consider looping protocols,
we do not consider the case where a complete restart is necessary. For self-similar
infinite trees, we simplify by drawing edges to earlier states.

Security of Card-Based Protocols. We slightly adjust the security notion
from the literature to standard decks. For more details, we refer to Koch [K19].
Since different encodings for the same bit are possible, we want the encoding
basis of the output bit to not give away anything about the inputs. We say that a
protocol is secure if at any turn operation the probability for each observation v
is a constant p € [0,1] (using }_,c (132 Xi = 1), and additionally if at any result
operation the probability of each output basis is constant in the same sense.
Similar to the work by Kastner et al. [KKW*17], for our impossibility proofs
and formalizations with bounded model checkers, it is also useful to consider
a weaker form of security, which is a necessary criterion for security as defined
above: A protocol is possibilistically output-secure, if at any state of the protocol,
every output can still be possible. This weakens the normal security guarantee, as
the probability for a given input sequence could be higher in this state. One could
even be able to exclude a specific input sequence, if the corresponding output
can still be possible through another input sequence. Together with possibilistic
input-security, this discussion leads to the following formal definition:

Definition 2 (cf. [KKWT17]). A protocol P = (D,U,Q,A) computing a

function f:{0,1}?> — {0,1} has possibilistic input security (possibilistic output
security) if it is correct, i.e., the probability of the output being O = f(I) is 1, and

11



for uniformly* random input I and any visible sequence trace v with Prv] > 0
as well as any input i € {0,1}? (any output o € {0,1}) we have Prlv|I =i] > 0
(Prv|f(I) = o] > 0).

Proving Lower Bounds. Let us begin by defining an equivalence relation on
the states that helps to greatly reduce the complexity of impossibility proofs by
identifying states that are only a permuted version of each other:

Definition 3 (Similarity). We call two states, or analogously two reduced
states as defined next, p and p' similar, if there is a permutation m such that
applying (perm, ) to p gives rise to p'. For notation, let (1) be the equivalence
class of 1 up to similarity, i.e., the set of all states that are permuted versions of
u as defined by similarity.

In other words, p is similar to p’ if it is equal to p’ up to column permutation
on the sequences part of the state depiction.

As in the work by Kastner et al. [KKW ™17, Definition 3], we define reduced
states, where states are not annotated by their symbolic probabilities, but by the
result that is specified by their inputs — a formal definition follows below. This
simplifies impossibility proofs by reducing information and the state space. Any
such reduced tree captures only a weak form of security, possibilistic security,
as discussed above where each output (reachable in principle) needs to be still
possible. Showing that a protocol is impossible even in this weak setting implies
its general impossibility.

To obtain a reduced state tree, we project all the symbolic probabilities of
the sequences of all states in a state tree to a type (representing the possible
future output associated with the sequence in a correct protocol, see below),
which can be any o € {0, 1}. For this, let P be a protocol computing a function
f:{0,1}? — {0,1} and p be a state in the state tree. For any sequence s with
u(s) being a polynomial with positive coefficients for the variables Xy, , ..., Xy,
(1>1),set i(s) =o€ {0,1} if o= f(b1) = f(b2) = ... = f(b;) in the resulting
reduced state fi. We call sequences in ji according to their type o-sequences.
Moreover, we introduce the additional type L for sequences s where u(s) does
have positive coefficients for variables representing input that would map to
different output, as in Xoo + X117 when f(0,0) # f(1,1)°.

Definition 4 (Reduced State). Let P be a protocol computing a Boolean
function f: {0,1}2 — {0,1} with deck D. Then a reduced state i of P is a map
fi: Seq? — {0,1, L} which maps a sequence s € Seq” to its type (as defined
above).

* Actually, the distribution does not matter, as long as Pr[I = 4] > 0 for all i € {0,1}.

5 1t is clear that if a state with a L sequence arises, then the protocol has to abort
later, as if this sequence would actually lie on the table, it is no longer clear whether
an input sequence encoding (0,0), or an input sequence encoding (1,1) was on the
table at the start.
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If p is a (non-reduced) state of P, we can map it to its reduced state as follows:
The reduced state fi of P arising from p is defined via fi(s) := ts, where ts is the
type of u(s). Note that it is always possible to map a state to its reduced version.

As an example, let us look at the tree excerpt on the left of Figure 1, and its
reduced version (here, shown on the right), when assuming it is part of a protocol
computing AND:

1234 X0 + Xou 1234 0
1243 Xy 1243 0
2134 X, 2134 1
(shuffle, {id, (3 4)}) (shuffle, {id, (3 4)})
v v
1234 1/5(Xo0 + Xo1 + X10) 1234 0
1243 15(Xoo + Xo1 + X10) 1243 0
2134 /X714 2134 1
2143 1/X14 2143 1

For example, the annotation of 1234 in the first state, Xo9 + X1, is mapped to
its type 0, as it only contains variables representing inputs (namely (0,0) and
(0,1)) that result in output 0. Note that by using reduced states, we bring the
state space from the countably infinite to the finite, which is a necessary step
for the impossibility proofs, albeit using it only allows us to show impossibility
to the weaker notion of possibilistic security (which nevertheless is a necessary
condition for full security, hence the even stronger impossibility claim).

A reduced state is turnable at position i € {1,...,|D|}, if for each symbol
c € X, there is, among the sequences s with symbol ¢ at position i, an r-sequence
for each r € {0,1} in the image of the function computed by the protocol, and/or
a L-sequence. This essentially means that after the turn at 7 all outputs are still
possible, capturing the notion of output-possibilistic security. The reduced state
is turnable if it is turnable at a position ¢ € {1,...,|D|}.

For proving impossibility results, we make use of the backwards calculus as
given by Koch [K18]. We highlight the main ideas here, but refer to it for details.

Definition 5 (Backwards Shuffle). Let G be a non-empty set of reduced
states of a protocol P. Then shuf_l(g) is the set of reduced states y' of P such
that there is a permutation set II (containing id, and dependent on u') such that
(shuffle, IT) applied to 1’ results in a reduced state in G. In other words, shuf ~1(G)
is the set of states that are transformed into a state in G by a shuffle. Note that
the trivial shuffle is allowed, i.e., G C shuf ().

13



For example, if G would consist of just one state, p, where o1,...,04 are
distinct symbols®:

0102 0304
0102 0403
0201 0304
0201 0403

-0 O

then shuf~*(G) would contain exactly the following eight states:

0102 0304 0

01020403 0] ]01020403 0]]|01020304 0] |01020304 0| |01020304 0
00010304 1]|00010304 1]|]|02010304 1]||01020403 0] |01020403 0
02010403 1||09010403 1]|]|02010403 1]||09010403 1||09010304 1

0102 0403 0 0102 0403 0 0102 0304 0
0201 0403 1 0201 0304 1 0201 0403 1

To see this, observe that the first one is just p, which is contained by definition, as
the trivial shuffle (shuffle, {id}) will map it to itself. Moreover, all the other states
in this list result in p by the (shuffle, {id, (3 4)}). The above list is exhaustive
as we cannot generate a 0-sequence or a l-sequence via a shuffle if it was not
already present in the state on which the shuffle was applied. (Note that in the
generation of this list we make use of the assumption that id is always contained
in a shuffle, which is the case for closed shuffles anyway, but w.l.o.g. otherwise
also, as in the case that id would not be contained, we could replace the shuffle
by a conjugated version that is pre-/postfixed by a corresponding deterministic
perm operation, cf. Kastner et al. [KKW™17].)

Definition 6 (Backwards Turn). Let G be a non-empty set of reduced states
of a protocol P. Then, turn;l(g) 18 the set of reduced states p' of P, such
that u' € G, or that there is a position i € {1,...,|D|} such that (turn,{i})
applied to p' results in reduced states that are contained in G. In other words,
it is the set of states being in G, or having a turnable position © such that all
immediate successor states from a turn at i are in G.

For example, if G would consist of three reduced states p1, ..., u3, which each
have a constant column at the fourth position:

1234 0] (1243 0| | 1342 0
1324 0] (1423 1| | 1432 1
2134 1|(21431||3142 1

% While we chose for the example the same state as depicted on p. 21 in the impossibility
proof where it is later used, note that there, G also already includes all the depicted
eight states including any deterministic permutations (via the similarity relation) of
all these, and hence is a much larger set to start with.
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Then turng 1(G) would contain, in addition to the states in G, exactly the following
four reduced states:

1234 0
1324 0
2134 1
1243 011234 0| (1234 0| | 1243 0
1423 11324 0| ]1324 0| | 1423 1
2143 121341 ||21341||2143 1
1342 011243 0| 1342 0| | 13420
1432 11423 1| (1432 1| | 1432 1
3142 12143 1||3142 1| |3142 1

Y ’

Here, first observe that the first state is just a combination of all three states,
whereas the second, third and fourth is a combination of 1 and ps, of p; and
us and of po and pg, respectively. When forming the “backwards turn” set, we
can just combine states with a constant column of distinct symbols into one,
as a turn at the position where these individual states had a constant column
branches/gives rise to exactly these individual states.

We call turn; ' (+) and shuf ' (-) backwards turn and backwards shuffle. Define
by cl¢(G) the closure of turn; ' (+) and shuf "' (-) operations on G. Note here, that if
a finite-runtime protocol exists for a given start state, then there exists a sequence
of shuffle/turn operations which, applied to the start state, will result in a final
state. Therefore if we assume G to be the set of all possible final states for a deck
D, then it holds that if the start state is not in cl¢g(G), then no finite-runtime
protocol for D can exist.

2.2 Automatic Formal Verification Using SBMC

In the following, we introduce an automatic technique from formal program
verification, namely software bounded model checking (SBMC), to the field of
card-based cryptography. We first describe the general technique of using SBMC
to check for software properties, before we explain how we apply it to search
for cryptographically secure card-based protocols. In a nutshell, we translate
the task to a reachability problem in software programs (which will later-on be
a program encoding operations on an abstract state tree as described above),
which the SBMC tool encodes into an instance of the SAT problem.

We assume we are given an imperatively defined function f under the form of
an imperative program (for example, written in the C language), that uses some
parameter values taken among a set of possible start values I. An entry i € [ is a
list of values, one value for each such parameter: it gives a value to everything that
a run of f depends on, such as its input variables, or anything that is considered
non-deterministic (i.e., of arbitrary, but fixed, value for any concrete evaluation
of f) from the point of view of f. For this reason, those parameters are qualified
as “non-deterministic”, to distinguish them from normal parameters used in a
programming language to pass information around. Moreover, some values can
be “derived”, thus, computed in f from the non-deterministic parameter values,
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or declared as constants in f, and both values of non-deterministic parameters
or derived values can then be used as normal parameters in the program. We are
also given a software property to be checked about f, in the form €31t = (Ccons,
where ant and cons stand for antecedent and consequence respectively. Both C21
and C°" are sets of Boolean statements. A Boolean statement is a statement of
f that evaluates to a Boolean value, for example, a simple statement checking
that some computed intermediate value is positive. An entry ¢ is said to satisfy
a set of Boolean statements if and only if all Boolean statements in the set
evaluate to true during the execution of f using the non-deterministic parameter
values i, and is said to fail the set of Boolean statements otherwise. The property
C#nt = (o8 requires that for all possible entries i € I, if 4 satisfies C3*, then
1 satisfies C°™. As an example, assume f computes, given ¢, two intermediate
integer values v; and v, and then returns a third value vs. The property to be
checked could, e.g., be: if vy is negative, then vy is positive and vs is odd. A
solver that is asked to check a software property C*" = C°"S thus exhaustively
searches for an entry 4 that satisfies C3* but fails C'°°"S. The property is valid if
and only if there does not exist any such entry ¢, i.e., it is impossible to find.

SBMC is a fully-automatic static program analysis technique used to verify
whether such a software property is valid, given a function and a property to be
checked. It covers all possible inputs within a specified bound. It is static in the
sense that programs are analyzed without executing them on concrete values or
considering any side channels. Instead, programs are symbolically executed and
exhaustively checked for errors up to a certain bound, restricting the number
of loop iterations to limit runs through the program to a bounded length. This
is done by unrolling the control flow graph of the program and translating it
into a formula in a decidable logic that is satisfiable if and only if a program run
exists which satisfies C®** and fails C°®s. The variables in the formula are the
non-deterministic parameters of f, and their possible values are taken from 1.

This reduces the problem to a decidable satisfiability problem. Modern SAT-
solving technology can then be used to verify whether such a program run exists,
in which case an erroneous input has been found, and the run is presented to
the user. If the solver cannot find such a program run, it may be either because
the property is valid, or because it is invalid only for some run which exceeds
the bound. In some cases, SBMC is also able to infer statically which bound is
sufficient to bring a definitive conclusion.

2.3 Automatic Formal Verification for Card-Based Protocols

Our approach employs a standardized program representation of the KWH trees
introduced by Koch, Walzer, and Hartel [KWH15] (and described in the beginning
of this section). This allows a general programmatic encoding of both shuffle
and turn operations, as well as of the fixed input state (indicated by the input
card sequences from the table in the very beginning of this paper), the non-
deterministic reachable states, and the logical function to be computed securely.

The input state is trivially derived from the specified numbers of cards as
the size and order of the players’ commitments is fixed and the (without loss of
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generality) consecutively ordered card sequence of (distinguishable) helper-cards
is simply prepended to the input card sequence, annotated with their respective
input probabilities. Any input state thus consists of exactly four distinguishable
card sequences. Based on this input state, the program performs a loop, which
successively performs turn or shuffle operations based on the input state and
computes the resulting states from which it continues performing turn or shuffle
operations. The loop ends when the specified bound (representing the length of
the protocol to be found) is reached, checks whether the final state is indeed
a valid computation of the secure function, and (if and only if the check is
successful) the found protocol is then presented to the user.

However, this task involves multiple computational complexities, most notably
both the number of (possibly) reachable states, and the choice of the next
operation, i.e., either choosing the card(s) to be turned or which shuffle to perform.
We partially overcome the first computational complexity by not considering Las
Vegas protocols as this relieves us from checking every reachable sequence of states
to be finite. In fact, we compute all reachable states after every protocol operation,
but only check each of them to be valid, and then proceed our operations
on only one of them, which is non-deterministically chosen among them. The
second computational complexity consists in first non-deterministically choosing
whether to shuffle or to turn, and then to perform the respective operation. The
turn operation is less interesting as it is mostly the obvious implementation
for updating the computed state and its probabilities using mostly standard
imperative program operations, except that the turn observations are again
non-deterministically chosen, hence making the SBMC tool consider any of them
to be possible. The more interesting operation is the shuffle operation, as it must
randomly draw a set of permutations on which the thereby reachable states
are computed. We implement this by non-deterministically choosing a set of
permutations from a precomputed set of all generally possible permutations.
Both the amount and the choices of the respective permutations are chosen
non-deterministically. Moreover, we have the ability to restrict our experiments
to only closed shuffles, and can even bound the shuffle set size to keep the running
time of the verification time acceptable, if needed (albeit possibly reducing the
strength of the results, cf. Section 9). For example, in our analysis of the run-
minimality of Protocol 1, we bounded the permitted size of the permutation sets
by the (arguably quite reasonable) number 8, in order to keep the execution times
still manageable for our experiments. Note that our technique from Section 9
shows that only a bound of 12 would be really safe to assume, leaving a small gap
in the argumentation as we superficially exclude exactly the possible 12-element
alternating groups A4 as shuffles steps from the possible protocol candidates,
when showing that no shorter protocol can exist. We leave it for future work
to tweak the code such that the looser bound of 12 is within reach with our
technique.

Finally, after iterating the afore-mentioned loop for the specified bound number
with the described operations and restricting that final state indeed computes
the secure function, we specify the software property C'°°™® to be checked simply
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as the Boolean value false. This trivially unsatisfiable property implies that
the verification task always fails once there exist input and non-deterministic
parameters such that the respective program run reaches the statement in the
program which checks this property. The SBMC tool exhaustively searches for a
run of the specified length through the program which leads from the starting
state to a correct and secure state which satisfies the given security notion, i.e.,
reaches the above-metioned statement. Hence, if there exists any protocol of the
specified length which computes the secure function and for which the specified
operations and valid intermediate states (representing KWH-trees) exist, such
a protocol is presented by our method. If no such protocol can be found, we
know there is no card-based protocol of the specified length satisfying all our
restrictions on permitted turn and shuffle operations, as well as intermediate and
final states. This means there exists no model for the SAT formula which encodes
the set of all permitted program runs given our specified requirements.

Hence, assuming our translation of KWH trees and respective protocol op-
erations into a simple imperative program are correct, this method can then
be used in an iterative manner to strengthen the bounds from the literature.
Note that this is largely based on the so-called “small-scope hypothesis”, i.e., a
large number of bugs are already exposed for small program runs. We apply this
hypothesis to the setting of card-based security protocols as all protocols in the
literature only use a small number of turn and shuffle operations and the length
of any found protocol is below ten operations.

This approach can be generalized to search for card-based protocols using a
pre-defined number of actions and adhering to a given formal security notion.
We have written a general program’ to search for such situations parameterized
in the desired restrictions on actions and security notions. Note that, in order
to cope with the still considerable state space size, we use the refined security
notion of output-possibilistic security.

3 On the Choice of Cards for Input and Output

We essentially show that the choice of input basis (or output basis, but not
necessarily both) is irrelevant for the functioning of the protocol. In rare cases,
one has to append two operations to existing protocols to make them fully basis
flexible. In the Niemi-Renvall protocol shown above, the protocol description
specifies Alice’s cards to be of symbols 1,2, and Bob’s to be of symbols 3,4
and the helping card to be a 5. To simplify later proofs and to demonstrate
an interesting symmetry in card-based protocols, we show that this choice is
irrelevant for the functioning of the protocol.

For this, we define a relabeling from deck alphabet X to a deck alphabet X7, i.e.,
a bijective function \: ¥ — X’.% A relabeling of a sequence s = (s1,...,5,) is a
relabeling of each of its symbols, i.e.; A(s) := (A(s1),...,A(sn)). A relabeling of a

" The source code is available under https://github.com /mi-ki/cardCryptoVerification.
8 In case of the decks being a subset of N, we may use usual permutation notation. We
require that if A maps x to y, then the cardinalities of x and y are equal in the deck.
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state is given by the relabeling of all its sequences, a relabeling of a protocol/state
(sub)tree is the relabeling of all its states as described by Figures 3 and 5.

! |

1324 X, 1324 X,
2134 X, 2134 X,
1342 X, 1342 X,
2143 X, 2143 X,
3 relabel: (1 3)(24)
Y
3142 X
4312 X,
3124 X,
4321 X3
(turn, {1,2}) (turn, {1,2})
3177 4377 1377 /‘ \2177
3142 X, 4312 Xy 1324 X, 2134 Xy
3124 X, 4321 X3 1342 X, 2143 X,

¢ (result, 4, 3) ,L(result, 3,4) ,L(result, 3,4) i, (result, 3,4)

%) %) %)

Fig. 3. Example of the relabel action, swapping the card symbols of 1 and 3, and of
2 and 4, respectively. This action is for abbreviated writing only, it does not actually
relabel the physical cards, which seems impossible without learning their symbols.
Hence, the tree on the left is virtually translated to the right. Note that the relabeling
only affects the sequences, the observations at edges belonging to turn actions and may
swap the order of the indices in result operations.

Lemma 1. If P is a protocol with deterministic output basis, one can relabel
the cards without affecting the functioning.

Note that the deterministic output basis restriction is important, because if
we have a randomized output encoding such as in Figure 4 on the left, a relabeling
might affect the monotonicity of the encoding of only one of the possible output
bases. In this case, we make use of the following lemma, as illustrated Figure 4.

Lemma 2. FEvery protocol with one-bit output and a randomized output basis
can be transformed into a protocol with deterministic output basis, by inserting a
shuffle and a turn before any result operation with randomized output basis.

4 Impossibility of Finite-Runtime Four-Card AND and
Basis Conversion with Overlapping Bases

In this section we give our main impossibility results.
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i i

4321 X, 4321 hX;
21 34 15X, 21 34 156X,
3412 16X, 3412 46X,
12 34 14X, 12 34 15X,

Y (result, 1,2) (shuffle, (3 4))), i.c., shuffle

arbitrary on remaining cards

4312 sXy
43 21 14X,
21 34 14X,
21 43 14X,
3412 14X,
34 21 14X,
12 34 14X,
12 43 14X,

i(turn, {3,4})

712 2791 2734 743

4312 X, 43 21 X, 2134 X, 2143 X,
3412 X, 34 21 X 12 34 Xy 12 43 Xy

¢(resu|t, 1,2) ¢(resu|t, 1,2)¢(resu|t, 1,2) ¢(resu|t, 1,2)

%) © © %)

Fig. 4. Example of making the basis deterministic, cf. Lemma 2. On the left, you can
see a tree part with one-bit output and randomized basis, i.e., the output basis may be
{1,2} or {3,4}, each with a probability of 1/2. We can make it known to the players, i.e.,
deterministic, by splitting up the state via an Sk-shuffle (here: £ = 2) on the remaining
cards (so that they no longer contain any information), turning these and then doing
the result operation. By what is visible in the turn, one can derive the output basis.

Theorem 1. There is no four-card finite-runtime basis conversion protocol for
overlapping bases with deck D = [1,2,3,4].

Proof. We proceed by using the backwards calculus technique by Koch [K18], as
described in Section 2.1. That is, we start with the set of final states G of basis
conversion protocols. Then, we iteratively build a (possibly) larger set by adding
states which reach the states of the current set by a shuffle or a turn, in order to
obtain the closure cl¢(G). As we consider only reduced states (cf. Section 2.1), the
set of possible states is finite, hence, applying turn{l(-) and shuf71(~) operations
to the (growing) set of states, starting from G, will become stationary. Finally, it
remains to be shown that the start state is not contained in the derived closure.

We assume w.l.0.g.” the input basis {1, 2} with helping cards 3 and 4, and the
output basis {01 < 02} C {1,2,3,4}. For the basis conversion impossibility, we
will require [{1,2} N {o1,02}| =1 (which we call basis intersection requirement

9 For the impossibility result, the symbols of the cards are irrelevant, as we could
prepend a relabel operation to any protocol, to bring it into this form.

20



s1 p(s1) s p(s1)

st ulse) s nlse)

' relabel: A: X - 3
Y

A(s1) p(s1)

Ase) p(se)

(result, i, 7) (result, 7(7), 7(5)),
| with 7 € {id, (i j)}

%) %)

Fig. 5. The formal rule for relabeling leaf nodes of one-bit output protocols. Let
r1 = si[i], 2 = sk[j] € D be the output symbols (before relabeling) of some arbitrary
sequence si of u. Then, 7 =id, if r1 < ro implies A(r1) < A(r2) (A is monotone on 71,
re) and 7 = (i j) otherwise.

in the following). However, whether we use this requirement or not, the closure
cl¢(G) remains the same!'?. Hence, we will use this requirement only in the last
step of the proof when we show that the start state is not in cl¢(G), and reuse
the closure for the AND protocol impossibility proof in Theorem 2.

After setting the stage, we start by describing the set Gy from which we
will derive the closure cl¢(Gp) according to the backwards calculus technique
described above. Let 03 < 04 be the remaining two symbols, i.e., {03,04} =
{1,2,3,4} \ {01, 02}. Thus, the final state is (up to similarity'!) any choice of at

least one 1-sequence and one 0-sequence of the states on the left set!'?:
0102 0304 0 0304 0102 0
0102 0403 0 0304 0201 0
0201 0304 1 0403 0102 1
0201 0403 1 04030207 1

The state set on the right contains the template for final states with output basis
{03 < 04}, which we will include in the starting set Gy, as they are reachable
from final states with output basis {01, 02} by the backwards calculus anyway,
due to the existence of the disjoint basis conversion protocol by Mizuki [M16]
(again, with any choice of at least one 1- and one 0-sequence). As long as we can
still show that the start state is not in cl¢(Gp), it is okay to enlarge Gy, since our

!0 This is the (reduced-state) closure on the final states of arbitrary one-bit-output
functions for the given deck.

11 Refer to Definition 3. We do not want to assume anything on at which positions the
output lies, hence we include all permutations of the states into the discussion.

2 with the output being encoded in positions 1, 2, or at different positions, if looking
at the permuted versions of the state.

1
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claim is only made stronger (using the monotonicity property of the backwards
operations turn; ' (-) and shuf ' (-)).

We have shuf ! (Go) = Go, because any subset of a state from Gy which contains
at least one 1-sequence and one O-sequence (which is required as otherwise 1-/0-
sequences cannot be generated out of thin air by a shuffle) is already in Gy. Hence,
we consider Gy := turnf_l(go), i.e., the states which are turnable at a position
i, where all immediate child nodes after turning at i are in Go. W.l.o.g.!* we
fix the turn to be at position 4. Following Koch [K18, Lemma 3], we use that
G1 = turn; *(Go) = Go Uturn; *(cc(Go)) holds, where cc(Go) is the set of states in
Go that have a constant column, i.e., the union of these four equivalence classes
up to similarity:

(

0102 0304
0201 0304

0
1

)

0102 0403
0201 0403

0
1

)

0304 0102
0403 0102

0
1

)

0304 0201
0403 0201

0
1

)

The states from G; \ Gy look as follows:

..a 0
a1
b 0
b1
..c 0
e 1
..d 0
..d 1
(*)

where at least two of the four (two-sequence) blocks are present, and a, b, ¢, d € D
are pairwise distinct. We show that a further backwards turn does not enlarge
the set by showing cc(G1) = cc(Go). For this, note that the states from cc(Gy)
(i.e., the blocks, considered in isolation) have exactly two constant columns, but
with the specific pairing that if one of the constant columns consists of o1, the
other one consists of o5 and vice versa, or if one consists of oz, the other one
consists of 04 and vice versa.

Using this structure, we can deduce that states from Gy \ Gy with a constant
column, say w.l.o.g.'* at position 3, have the respective paired symbol (of the
01-02 Or 03-04 constant-column symbol pairing) in the fourth column. Therefore!®,
these states can have at most two sequences in total, i.e., they are already in Gg.
This shows turnf_l(gl) =G.

13 As we consider states up to similarity, we can just permute each of these states
constituting the full turnable state in such a way that their constant column is at
position 4

14" Analogous to before, as all constituting states of the set are up to similarity, we have
free choice in choosing a position at which the constant column should be.

15 As both sequences in a block have identical symbols in column 4, and given the
pairwise distinctiveness of these symbols between blocks, there are at most two such
sequences within a state.
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Now, for the main step of the proof, we define G, := shufﬁl(gl) and G3 :=
turng 1(G). Since the shuffling is unrestricted, applying another backwards shuffle
to Go cannot produce a larger set, as we can always replace two consecutive
shuffles by an equivalent single shuffle. The remaining proof will show G3 = G,
in which case no further enlargement is possible. Finally, showing that the start
state is not in Gy finishes the proof.

As Go’s states are subsets of G;’s states!S, cc(Ga)’s general form is as on the
left, from which we can leave out further sequences, as long as we still have at
least one 1-sequence and one 0-sequence:

...da 0
..o.da 1
db
(...ab )
TN R s
aa (...ac t2)
edb (oxd t3)

where t; € {0,1} (i = 1,2, 3) are the types of the sequences and ¢; = 1 — ¢; their
inverses. To see this, observe that states of the form on the left are subsets of
the form on the right, where x,y are either both set to a, or one is set to b and
the other to ¢, and, where we leave out at least all sequences interfering with
our wish of a constant column in this position (i.e., the sequences in parentheses
in the form on the right). With the variables introduced above, we assume a
(constant-column symbol) pairing between a and d, and between b and ¢!'7. This
is the only way to obtain a maximal number of sequences with a d in column 3
for a state in G;. Hence, states in cc(Gz) have at least 2 but at most 4 sequences.

Our aim is to show that the set of these states is cc(Gp) again, i.e., that
cc(Ga) = cc(Go). (In other words, we show that it is impossible to reach any state
in G; via a shuffle from a state of cc(Gz2) \ cc(Gp), which will be shown to be
empty.) In the following, we do a case distinction on the number of sequences of
states p € cc(Ga).

Let us prepend this case distinction with two general observations that will
be used in the following. First, every shuffle set IT that is used to map p € cc(G2)
to a state p/ € Gy will contain a permutation 7 with 7(3) # 3, i.e., one that
moves the constant (third) column, as otherwise we cannot generate necessary
additional sequences with a non-d symbol at position 3. As defined by Koch,
Walzer, and Hartel [KWH15], we call a state i/j-state if it has i 0-sequences and j
1-sequences. Using this notation, we have that, if u € cc(Gy) is an i/j-state, then

16 We assume w.l.o.g. that any shuffle contains the id permutation, hence, non-trivial
shuffling generates new sequences. Consequently, backwards shuffling then only leaves
out sequences, which we describe in set-theoretic terms, by abuse of notation.

7 Note that this only refers to the 2-line subblocks of a state.
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the reached p/ € Gy after the shuffle will be a i’/j’-state with ¢/ > 2¢ and j' > 2j,
as the shuffle generates i + j new sequences with d at a position 7(3) # 3.
Now, let us first consider (a) the case that p has three or four sequences. In
this case, there cannot be a permutation 7 € IT with 7(3) = 4, as there are only
two possible sequences with a d in position 4 in states of Gy, and this (i.e., having
a permutation that maps the d-column to column 4) is the only way to obtain
these two sequences ending with d, as no other column contains a d in p. Hence,
in this case, we have i’ + 7' < 6 due to the two unreachable sequences ending with
d. Moreover, as Gy is built from blocks with one 0- and one 1-sequence, we know
that 7" = 7/, But this allows us already to exclude the case of 7 + j > 2, because
if, e.g., i = 1 and j = 2 (or vice versa), then i’ > 2 and j' > 4, but j' = i’ yields
i +j =8, and if i = j = 2, then we also have i + j/ = 8, both contradicting
i’ + j' < 6. Hence, cc(G2) cannot contain any state with three or four sequences.
Now, let (b) p contain two sequences. For this case, we consider choices of
two sequences from a state in G; \ Go of () with d in column 3. (We will show
below that in the current case we can choose these more specifically from the
state on the right of (x), without the parentheses.)!® If we choose both sequences
to end with da, the state would be in cc(Gy), which is, however, inconsistent with
the state being in G; \ Go. Hence, there is at most one sequence of each of the
following types: sequences ending with da, with db and with dec. If we choose to
include a sequence ending with da, then it is inconsequential whether we choose
one ending with db or with dc (only the d-a constant-column symbol pairing
assigns a a special role). W.l.o.g. we choose a sequence ending with db in the
following. This leaves us with two choices, either to include a sequence ending
with da or to exclude it. In total, we can obtain three states that are not already

in cc(Gp):

beda 0 beda t acdb t
acdb 1 cadb t bade t

where t € {0,1} is the type of the sequence. However, the third state is similar to
the second one via the permutation (1 4), so we do not need to consider this case.
Each of these states needs one 1- and one 0-sequence, which we can fix w.l.o.g.
in the first state. This is because the first state is similar to the first state with
swapped 0 and 1 types, also via the permutation (1 4).

We want to show that there is no way to shuffle these two states into a state of
G1 \ Go as given in (x). As a first step, we show that, more specifically, it suffices
to demonstrate the slightly stricter claim that there is no way to shuffle these two
states into a state of G; \ Gy as given on the right of (x) (including the sequences
with parentheses). This is because of the following: As the two-sequence states
considered here each have a sequence ending with da, our shuffle needs to reach
the other sequence ending with da, in order to complete the block ending with

8 To see that this is not already immediate, observe that the state on the right of (x)
was chosen to maximize the number of d’s in column 3, and is not as general as
saying that the state is of () with a d in column 3. However, this loss of generality
does not restrict the general form of cc(Gz2) on the left of (%).
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a in Gy \ Go. Because of the d-a pairing, this sequence also has a d in the third
column. Hence, the state reached by the shuffle has at least three ds in the third
column. However, as we start with two sequences with distinct types (and all
symbols are distinct in the standard deck setting) any permutation 7 € II \ {id}
that increases the number of ds in that column (by 7(3) = 3) at least doubles
the number of sequences. Hence, the resulting state in G; \ Gy has at least four
ds in column 3 and is therefore of the form in (x).
Consequently, for the first state, we have the following scenario:

beda 0 i

cbda 1 <L

acdb 1 “

decab 0 VD) beda 0
(...de ?) acdb 1
(ccoac  ?)
(c..zd 7)
(-..yd 7)

Reaching the state on the left by a shuffle contains at least {id, (14 3), (14 2)}.
But applying (1 4 2) to the first sequence yields a sequence cadb, which is not
possible in the scheme on the left side due to being the third sequence with a
trailing b.

The case of the second state is as follows:

beda
cbda

cadb
cdab

..dc
..ac

c.xd
oyd 7

IS S N
a

(1432) beda t
cadb t

-~

-~

9
—_— | ——

—~ |~

Reaching the state on the left by a shuffle contains at least {id, (2 4), (14 3 2)}.
But if we apply (2 4) to the first sequence, we obtain badc, and if we apply
(14 32) to the second sequence, this gives the sequence adbe. The two additional
sequences both end with a ¢, hence they would form a block in the scheme on the
left, which is not possible, as the resulting block would miss a constant b-column.
This shows that cc(Ga) = cc(Gy).

The start state of base conversion protocols is (up to similarity)

1234 0
2134 1
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with the basis intersection requirement [{1,2} N {o1,02}| = 1. Because of this,
the state is not in Gy. As it has a constant column, it would need to be in cc(Gs)
which is equal to cc(Gp) by the argument above. Hence, the state is not in Go. O

Theorem 2. There is no four-card finite-runtime AND protocol with deck D =
[1,2,3,4] with fized-in-advance output basis.

Proof. As the final states are (without the basis intersection requirement) the
same as in the proof of Theorem 1, we use the closure cl¢(Gy) derived there, and
show that the start state of an AND protocol is not contained in cl¢(Gp). For this,
observe that the start state of an AND protocol is (up to similarity) as from the
following set:

In particular, it has three 0-sequences and one 1-sequence, which excludes it from
being in Gy or G; (derived in the proof of Theorem 1 above), as the numbers of 0-
and 1-sequences differ. Moreover, observe that it has in each column exactly two
distinct symbols, each exactly twice. For states in Go (which are subsets of Gy) it
holds that each symbol occurs at most twice in the turn column 4, where each
(two-sequence) block ending with one such symbol consists of one 1-sequence
and/or one 0-sequence. If we try to leave out sequences from the G; template (for
the subsets of G3) to obtain a state of type 3/1, we lose the property of having
each occurring symbol exactly twice. Hence, the start state cannot be in Go. O

1234
2134
1243

2143

_ o oo

~

5 Card-Minimal Protocols for AND

Theorem 3. There is a four-card Las Vegas AND protocol with deck D =
[1,2,3,4] using only random cuts.

Proof. See Figure 6 and Protocol 1.

Table 2. The different states of Protocol 1 after |1| was revealed in the first turn. The
permutation to be applied in this case is (3 4). The situation is similar in all other cases.

Bits  Sequence  After permutation Removing
(0,0) UEMex
(0,1) URx(
(1,0) U x4
(1,1) U yx
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1234 Xoo
1243 Xoy
2134 X9
2143 Xy,

(shuffle, (123 4)))

1234 1/1Xo0 3412 14 X00
1243 14Xo1 4312 1/1Xo1
2134 14Xy 3421 14Xy
2143 14Xy, 4321 14Xy
4123 1/1Xg0 2341 1/4X00
3124 14Xo1 2431 14Xo
4213 14Xy 1342 14Xy
3214 14Xy, 1432 14Xy,

(turn, {1})

1777 4777

1234 Xo0 2341 Xop | [ 3412 X0 4123 Xgo

1243 Xo1 2431 Xoq | | 3124 Xoy 4312 X

1342 Xy 2134 Xy | | 3421 Xy 4213 X

1432 X1, 2143 X1y | | 3214 Xy, 4321 X1,
(perm, (3 1))l (perm, (23 /L))l l(perm. (243)) l(perm‘ (23))

1243 Xoo 2134 Xop | [ 3124 Xoo 4213 Xoo

1234 X 1) | 2143 X, | | 3241 X S(12)(34) | 4132 X

1324 X0 [© 2413 Xy | | 3214 Xy T 4123 Xy

1423 X, 2314 Xy, | | 3142 X, 4231 X,

l(shuffle, ((1234))) l(shuffle, ((1234)))

YsXoo 4312 1/4Xoo 4213 aXoo 1342 aXgo
1234 14X, 3412 14Xq, 4132 4Xoy 3241 1/4Xo
1324 14X,9 2413 14Xy 4123 14Xy 2341 1aXy

)
1423 14Xy; 2314 14Xy, (shuffle, (12 3 4))) (shuffle, ((1234))) | 4231 UsXyy 3142 14Xy, (shuffle, {(1 2 3 4)))
3124 14Xoo 2431 /sXoo 3421 1/1Xoo 2134 /41X
4123 VaXo1 2341 YiXor 2413 sXo1 1324 11Xy
4132 YaXyo 3241 YiXyo 3412 14Xy 1234 14Xy
3142 4Xy 4231 VaXy 1423 14Xy, 2314 YaXyy

(turn, {1}) (turn, {1})

127 / 2777

1342 Xop 2134 Xoo 3421 Xoo

(shuffle, {(

2777 4777

2431 Xoo 3124 Xoo 4312 Xoo

2341 Xoy 3412 Xoy 4123 Xoy 1324 Xop 2413 Xoy 3241 Xoy
2413 Xy 3241 Xy 4132 Xy 1234 X0 2341 Xy 3412 Xy
2314 Xy, 3142 Xy, 4231 X4 1423 Xpy 2314 Xy, 3142 X4
l(shufﬂa ((234))) (shuffle, (23 4)>)l

3124 13X, 2134 1/3X,

3412 13X, 2413 1/3X,

3241 1/3X, 2341 1/3X,

3142 13X, 2314 13X,

3214 13X, 2431 13X,

3421 13X, 2143 13X,

(turn, {2}) (turn, {2})

3124 X, | [3241 X, | [3412 X, 2134 X, | [2341 X, | [2413 X,
3142 X, | [3214 X, | | 3421 X, 2143 X, | [2314 X, | |2431 X,

(result, 3,4) (result, 4, 3) | (result, 3,4) (result, 3,4) (result, 4, 3) | (result, 3,4)
v v v v v v

Fig. 6. Four-card Las Vegas AND protocol using random cuts, cf. Protocol 1. Here,
Xo = Xoo + Xo1 + X10 and X1 := X11. The relabel operations are not actual actions
to be performed but help abbreviate the write-up of the protocol, see Section 3.
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In order to get a better understanding of why the protocol works and how it is
related to the protocol by Niemi and Renvall [NR99], let us consider exemplarily
the case that the first card to be revealed is a 1, the other cases are analogous.
In this situation, let us look at the different cases, given in Table 2. Using the
method as before, we can remove |3] by performing a random cut while leaving
the relative order intact ( here is assigned the role of the |5] in Niemi and
Renvall’s protocol) and waiting until it appears when turning. Later we can
remove the |1] from the remaining cards, to get the output encoded using the
cards 2] and . A closer analysis of the situation after removing |3] shows that
one can take a shortcut when one is not bound to the output being cards
(which is not our goal, because in the other cases besides the first turn being 1 it
is different anyway, and one would have to add conversion protocols to ensure
this). The situation is as follows: The remaining three cards are either a cyclic
rotation (cut) of the sequence , if the output is 0, or a cyclic rotation of
the sequence , otherwise. A cut cannot rotate a sequence of the former
type to become the other, or vice versa. After the cut we can safely turn any
card and, from the resulting symbol, deduce in which order the other cards must
be output to encode the protocol result.

Protocol 1 Our four-card AND protocol. The first bit is in basis {1, 2},
the second in {3, 4}, and the output in {1, 2,3, 4}\ {va, v3}, where vy, v3 are
the last two revealed symbols. See Figure 6 for a KWH tree representation.

(shuffle, ((1 2 3 4)))

v1 = (turn, {1})

if v1 =1 then (perm, (3 4))

else if v; = 2 then (perm, (2 3 4))
else if vy = 3 then (perm, (24 3))
else if v; =4 then (perm, (2 3))

Let m:= (1 3)(24)
repeat
(shuffle, ((1 2 3 4)))
V2 = (turn, {1})
until vo = 7(v1)

(shuffle, {((2 3 4)))

vz = (turn, {2})

Let 0 := (14)(23)

if v3 = o(v2) then (result,4,3)
else (result,3,4)

For an analysis of the number of shuffle steps in the protocol, observe that
we have performed two shuffles until we reach the loop condition, which holds
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with probability /4. After the loop, we have one additional shuffle step. Hence,
the expected number of shuffles is 3+ > o | (1 — %)n = 6.

Comparison to Niemi and Renvall [NR99]. The previous protocol, using
five cards, was described in the introduction. For a pseudo-code description, see
Protocol 2.

Protocol 2 Five-card AND protocol by Niemi and Renvall [NR99]. The
first bit is in basis {1,2}, the second in basis {3,4}. The output basis is
{1,4}. See also Figure 7 for a KWH tree representation.

(perm, (3 4))
repeat

(shuffle, ((1 2 3 4 5)))
v := (turn, {1})
untilv =2 orv=3
repeat

(shuffle, ((2 3 4 5)))
v := (turn, {2})
untilv =2 orv=3
repeat

(shuffle, ((3 4 5)))
v := (turn, {3})
untilv =15

(result, 4,5)

As Niemi and Renvall state, their running time in the number of shuffle steps
is calculated as follows: Their protocol starts with a shuffle and repeats this
with probability 3/5s. The second loop contains a shuffle and has a repeating
probability of 3/4. The shuffle in the final loop is repeated with probability 2/3. In
total, the expected running time is 34+ > (%)n +>0 (%)n +>0, (%)n =
3+ 1.5+3+42 =09.5. However, for a fair comparison to our protocol, we eliminate
the last loop from their protocol, as its only function is to ensure that the output
is in basis {1,4}, which our protocol does not guarantee. In this case, the modified
Niemi-Renvall protocol has an expected number of 3 + 1.5 + 3 = 7.5 shuffle
steps. Hence, our four-card AND protocol needs one card less and outperforms
the Niemi—Renvall protocol by an expected number of 1.5 shuffle steps.

6 Card-Minimal Protocols for Basis Conversion with
Overlapping Bases

In this section, we give two protocols for converting a basis encoding in the case

where the old and the new encoding share a card. The first protocol has an
expected (finite) running time of three shuffle and turn operations. While it has
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12345 Xoo
12435 Xo1
21345 Xy
21435 Xy,

(perm, (1245))
(shuffle, (123 45)))

51324 15Xgp 31452 U5X1o
51423 15Xo; 41352 15X
52314 15X19 24513 15 Xo0
52413 15Xy, 23514 s Xoy
(shuffle, (123 45))) | 13245 Y5Xoo 14523 15X 10| (shuffle, (123 45)))
14235 15X 13524 15X,
23145 15X19 45132 s Xoo
24135 15X1; 35142 15Xy
32451 15Xp0 45231 s X1o
42351 15Xo1 35241 15Xy,

l(turn‘ {1})

27777 37777

24513 Xoo 13245 Xoo| [51324 Xoo | [45132 Xoo 32451 Xoo
23514 Xoy 14235 Xo1 | | 51423 Xoy | |42351 Xo1 35142 Xo
23145 Xio 14523 Xy0| | 52314 Xyo| |45231 X1 31452 Xy
24135 Xy, 13524 Xy 52413 Xy, 41352 X1, 35241 Xy,
l(shufﬂe. ((2345))) l(shuffle, ((2345)))
24513 4Xop 21345 Y4Xoo 32451 Xoo 34512 Xoo
23514 sXor 21435 1/4Xo 35142 X1 31425 X
o |23145 1iXyp 24531 aXoo 31452 Xy 34521 X0
(shuffle, (234 5))) | 24135 aXyy 23541 14Xy, (shuffle, (234 5))) (shuffle, (2345))) [35241 X;; 32415 X, | (shuffle, ((23 4 5)))

23451 4Xoo 25134 14Xgo
24351 4Xo1 25143 14Xo1
25314 4Xq9 21453 14Xy
25413 14Xy 21354 14Xy,

| (turn, {2})

31245 Xoo 35124 Xop
32514 Xo1 34215 Xop
32145 X1 35214 Xy
31524 X1y 34152 Xy,

1 (tumn, {2})

21345 Xqo 23451 X0 24513 Xqo 25134 X0
21435 Xo; 23514 Xoy 24351 Xq, 25143 Xoy
21453 X0 23145 Xy 24531 X0 25314 Xy
21354 Xy, 23541 X1 24135 X1y 25413 X1

l(shufﬂe. (345))

31245 X0 32451 Xqo 34512 Xgo 35124 Xqo
31425 Xo, 32514 Xq; 34215 Xoy 35142 Xq,
31452 Xy 32145 X0 34521 Xy 35214 X0
31524 X1y 32415 Xy, 34152 X1 35241 Xy,

l(shufﬂe, ((345)))

23451 1/3X¢ 32451 Xy
23514 1/3X, 32514 X,
(shuffle, (34 5))) | 23145 1/3Xo (shuffle, (3 4 5))) | 32145 Xo

23541 13X,
23154 15X,
23415 13X,

(turn, {3})

32415 X,
32154 X,
32541 X,

(turn, {3})

7177 29477 27577 7 77577
23145 X, 23451 X, 23514 X, 32145 X, 32451 X, 32514 X,
23154 X, 23415 X, 23541 X, 32154 X, 32415 X, 32541 X,

i(result, 4,5)

©

i(result, 4,5)

Fig. 7. KWH tree of the five-card AND protocol given by Niemi and Renvall [NR99] with
D =1,2,3,4,5] using only random cuts, cf. Protocol 2. Note that X := X0+ Xo01+X10
and X1 := X11. The output is in basis {1,4}.
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not been explicit in the literature, it is in a way implicit in the protocol by Niemi
and Renvall [NR99], as the authors aimed to get a fixed-in-advance output basis.

213 X,
123 Xo

(shuffle, (1 2 3)))

213 14X,
123 13X,
321 15X,
312 14X,
132 15X,
231 15X,

(turn, {1})

277 \3?7

213 Xp | 321 Xy
231 Xy | |312 X,

l(result, 3,2)

(shuffle, (1 2 3))) (shuffle, (1 2 3)))

Fig. 8. Three-card Las Vegas basis conversion for D = [1,2, 3] with uniform closed
shuffles.

Theorem 4. There is a three-card Las Vegas basis-conversion protocol for over-
lapping bases with deck D = [1,2,3] and uniform closed shuffles.

Proof. See Figure 8 and Protocol 3.

Protocol 3 Three-card Las Vegas basis conversion protocol as given in
Figure 8 with D = [1, 2, 3], input basis {1,2} and output basis {1, 3}
repeat

(shuffle, ((1 2 3)))

v:= (turn, {1})
until v =2
(result, 3,2)

Theorem 5. There is a five-card finite-runtime basis conversion protocol for
overlapping bases with deck D = [1,2,3,4,5]. It only uses two random bisection
cuts as shuffle operations.

Proof. This is just applying the basis conversion by Mizuki [M16] twice, cf. Pro-
tocol 4.
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Protocol 4 Five-card finite-runtime conversion protocol with overlapping
bases for D = [1,2, 3,4, 5], input basis {1,2} and output basis {1, 3}
(shuffle, {((1 2)(4 5)))

v := (turn, {1})
if v =2 then (perm,(12)(45))

(shuffle, (1 3)(4 5)))

v := (turn, {4})

if v =4 then (result,1,3)
else (result,3,1)

1 struct sequence {
2 uint val[number0OfCards];
3 struct fractions probs;

4 };

Listing 1. C struct holding the state trees.

7 An Illustration of Our Verification Methodology

In the following, we exemplify our translation of card-based cryptographic AND
protocols using standard decks to the bounded model checker CBMC, which
takes programs in the C language. For our experiments, we used CBMC 5.11
with the built-in solver based on the SAT-solver MiniSat 2.2.0 [CKL04; ES03].
All experiments are performed on an AMD Opteron(tm) 6172 CPU at 2.10 GHz
with 48 cores and 256 GB of RAM.

We translate KWH trees in the C language using a simple encoding into
a bounded C program with only static structures and no pointers, e.g., we
employ C structs (see Listing 1) holding an array of card sequences for the
sequence s, attached with their respective values for each probability (for the
probabilistic security notion) or dependency (for output-possibilistic security) X;
occurring in u(s), which is simply encoded by another C struct fractions. The
sequences are constructed using non-deterministic values restricted by respective
software conditions to enforce a lexicographic ordering. Moreover, we assign
the starting values in p(s) with fixed (i.e., deterministic) values based on the
constructed sequences. Subsequently, an array of (consecutively) reachable states
is constructed non-deterministically using simple implementations of the turn
and the shuffle operation as explained in Section 2. We then repeatedly (after
each turn/shuffle) check whether all possible resulting (non-deterministic) states
correctly and securely compute the specified function, e.g., here a secure AND.

An example shuffle operation is shown in Listing 2 for the case of output-
possibilistic security. Therein, the keyword __CPROVER_assume is used by the
bounded model checker to restrict all program runs passing this statement to
satisfy the specified (Boolean) condition. By assigning values using the spe-
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1 uint permSetSize = nondet_uint();

2 __CPROVER_assume (0 < permSetSize);

3 __CPROVER_assume (permSetSize <= NUM_POSS_SEQ);
4+ uint permutationSet[permSetSize] [numberO0fCards];
5 uint takenPermutations[NUM_P0OSS_SEQ] = { 0 };

7 for (uint i = 0; i < permSetSize; i++) {

8 uint permIndex = nondet_uint();

9 __CPROVER_assume (permIndex < NUM_POSS_SEQ);

10 __CPROVER_assume (!takenPermutations[permIndex]);

12 takenPermutations[permIndex] = 1;
13 for (uint j = 0; j < numberOfCards; j++) {

14 permutationSet[i] [j] =

15 startState.seq[permIndex] [j] - 1;
16}

17 }

18 struct state result =
19 doShuffle(startState, permutationSet, permSetSize);
20 __CPROVER_assume (isBottomFree(result));

Listing 2. Simplified shuffle operation for CBMC.

cial function nondet_uint (), we assign a non-deterministic non-negative integer
number, which is restricted to values greater than zero and at most of value
NUM_P0SS_SEQ (which is a variable computed by the pre-processor and is the
maximum number of sequences possible with the given deck) in the following
program statement. In the shown example, the non-determinism is used to con-
struct a set of permitted permutation sets (to be used by the shuffle operation),
which makes the SBMC tool inspect the following program code for all possible
assignments of this value. If necessary, this may result in a fully exhaustive search,
however, the prover is often able to restrict the domain based on further program
statements and dependencies seen in the rest of the program. A similar trick
is used when computing the concrete permutations using the non-deterministic
value of permIndex in order to check all possible permutations which possibly
move the values, but preserve all existing numbers in the sequence itself. This is
done using the int-array takenPermutations, which is first initialized to zero and,
when choosing a concrete permutation, assumed to be zero at position permIndex,
however set to the number one right afterwards (such that it is not permitted to
be chosen again). In the subsequent inner loop, the permutations are assigned
choosing the according cards from the sequences in the start state using the
non-deterministic value permIndex. Finally, the shuffle is applied, resulting in the
state variable result, which is then checked using a further method isBottomFree
to not contain any sequences with impermissible values for X;, which would
result in incorrect computations of the AND function.
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We applied our approach to the computation of a secure AND protocol using
four cards in order to, firstly, substantiate our proof that no protocol of a length
below six can be found, and, secondly, automatically find a permitted protocol
using six operations. For the running times and formula size (i.e., numbers of
variables and clauses) generated by our method, we refer to Table 3 on p. 37.

8 Verification of Run-Minimality in Two-Color Deck
Protocols

For the two-color deck setting, a card-minimal Las Vegas AND protocol using
only four cards was given by Koch, Walzer, and Hartel [KWH15]. While they
use only closed shuffles, some of the shuffles are non-uniform and hence, the
protocol is rather difficult to implement. However, we argue that it is insightful
to analyze whether the protocol features a shortest run. For this, let us note that
there are two possible versions of this protocol: by contracting two subsequent
closed shuffles, we can generate a protocol with fewer but non-closed shuffles.
Both protocols are given in Figure 9 and Protocol 5, where Iy, Fi, Il5, F5 are
permutation groups and probability distributions are as follows:

Iy = ((12)(34)), Fi:ide 13,(12)(34) — 23, (1)
Iy == ((13)(24)), Fp:id > s, (13)(24) = 255,

and a1, as, a3 are placeholders for one or two actions, which are for the full
protocol as follows:

aq = (shuffle, (1 3)(2 4))); (shuffle, (2 3))), (2)
ag = (shuffle, ((1 3))); (shuffle, Iy, Fy),
= (shuffle, ((3 4))); (shuffle, IT5, F3),

and for the protocol using contracted shuffles as below:

aq = (shuffle, {id, (1 3)(2 4),(23), (124 3)}), (3)
o = (shuffle, {id, (1 3), (1 3)(2 4), (143 2)}, F3),
Farid > s, (13) = Vs, (13)(24) > 1/5,(1432) = 15,
as = (shuffle, {id, (34), (1 3)(2 4), (1 32 4)}, F4),

Fu:id > s, (34) = s, (13)(24) = 13, (1324) — 1a.

Run-Minimality Results. To summarize our run-minimality results derived from
our adaption of the program to the two-color setting, we showed by formal
verification that the closed AND protocol variant has a shortest run of 6 steps,
relative to all closed four-card AND protocols. This is because our method
excluded the possibility of an input-possibilistic'” closed four-card AND protocol

19 Because it found a possible output-possibilistic (but not input-possibilistic) protocol
run, we had to strengthen the search criteria to protocols which are at least input-
probabilistic.
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QdO% X1
Q&0 X0
&O0® Xo1
SO0 Xoo

aq

QV%d /X711
QeOd 1/X71
SO0S 15X10 + 1oXo1
QO 15X10 + 1oX01
SO0 15 Xg0
S&OQV 15X

3 (turn, {2})

*/\o

@*@& Xll QQ?‘J' Xll
QO X9+ Xo1 &O0S X1p+ Xo1

RO X

0RO Xoo

(65} Qs

(turn, {4})

Pr[?779)

VI VORY 'S Q0%d 13X
2 2/.
gzzg 1?2;1) (shuffle, IT;, Fy)  (shuffle, TT,, F>) :ggi 12%
KO0 15X, Qe 15X,
SO0 14X, &0K0 15X

(turn, {1})

Pr[0?77] =1/

OeOd X; SO0 X, KO0 X, O0dd X;
&00® Xo Q&0 11X, &00& /41X OO X,
result, 1,2) KOO 31Xo *OKO 3/1Xo éresult,?,@
(shuffle, {(1 3))) (shuffle, ((3 4)))
(perm, (134 2)) (perm, (124 3))
O0%d X &0 X
&00® 12X, Oh&O 15X,
&OK0 12X, &R0V 15X,

Fig. 9. The four-card protocol by Koch, Walzer, and Hértel [KWH15], with placeholders
as specified in the text to define two similar variants of the same protocol. The contracted,
non-closed variant has a shortest run of length 4, while the closed variant has a shortest
run of length 6.
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Protocol 5 Two protocols to compute AND using four cards, cf. also
Figure 9. The placeholders IT;, F; are given in (1) and the «; are defined
in (2) and (3).

aq

(turn, {2})

if v=(7,%,7,7) then

(turn,{2}) // turn back

Q2

1 (turn, {4})

if v = (7,7,7,%) then

| (result, 1,2)

else if v=(?7,7,7,Q) then
(turn,{4}) // turn back
(shuffle, {id, (1 3)})
(perm, (1 3 4 2))
(shuffle, Iz, F2)
goto 2

Ise if v = (7,0,7,7) then

(turn, {2}) // turn back

a3

2 (turn, {1})

if v=(9,7,7,7) then

| (result,2,4)

else if v = (&,7,7,7) then

turn, {1}) // turn back

shuffle, {id, (3 4)})

perm, (124 3))

shuffle, ITy, F1)

goto 1

o

A~~~

with a run of length 5. Moreover, our contracted AND protocol is run-minimal in
that no (output-possibilistic) four-card AND protocol with a run of length 3 exists.
See also Table 3. In the following, we describe the changes for our verification
method.

As the program by Koch, Schrempp, and Kirsten [KSK19] is already very
general, the adaptions for covering the two-color settings required only little
changes. The programs mainly differ in the assignment of the start state, in the
following code snippets identified by start, for the protocol. In the following, the
variable NUM_SYM specifies the number of distinct card symbols, which was not
needed in the standard deck setting, as there it was identical to the total number
of cards. In Listing 3, the variable N specifies this total number of cards.

In the standard deck setting, each player gets distinct symbols 1 and 2, or 3
and 4, respectively (as shown in the first two lines in Listing 3). For the two-color
deck setting, it suffices to require that the individual cards for each player are
pairwise distinct as shown in the first two lines in Listing 4. Moreover, we simply
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Table 3. Running times for showing/disproving protocol existence for standard and
two-color decks. While all rows having “v” in the column “Protocol” indicate that a
protocol run is output by our method with the CBMC running time as indicated in the
table, these do not automatically feature probabilistic security. Hence, we add references
to protocols with the given parameters, which should not (generally) be understood as
having been discovered using our method.

#Cards Shuffles #Steps Protocol #Var. #Clauses Time
STANDARD DECKS
4 closed 5 X 67.3 M  266.4 M 114.1 h
4 closed 6 v, also Figure 6 68.2 M  269.7 M 45.3 h
TwO-COLOR DECKS
4 - 3 X 5.2 M 20.3 M 46 min
4 - 4 v, also Figure 9 with (3) 6.9 M 27.0 M 50 min
4 closed 5 XP 123M  472M 79h
4 closed 6 v/, also Figure 9 with (2) 9.3 M 344 M 45 min
5 closed 4 v, also Figure 14 22.3 M 87.2 M 45 min

# This holds only w.r.t. protocols with shuffle size of at most 8, excluding subgroups of size 12.
P For this, we had to strengthen the security to input-possibilistic security.

1 __CPROVER_assume ((i '= 0 && i '= 1) || start[i] == 1 || start[i] == 2);
__CPROVER_assume ((i != 2 && i != 3) || start[i] == 3 || start[i] == 4);
3 for (uint i = 4; i < N; i++) {

4 start[i] =i + 1;

5 }

N

Listing 3. Simplified start sequence assignment in the standard deck for CBMC.

numbered the helper cards consecutively for the standard deck setting (see the
loop in Listing 3), but allowed an arbitrary assignment of valid card symbols in
the two-color deck setting (see the loop in Listing 4).

Besides the introduction of the variable NUM_SYM, these are the main changes
that were needed in order to cover the two-color deck setting. Note that we
moreover adapted the script that calls the SBMC tool together with our C program
to compute the new number of possible sequences. For the standard deck setting,
the number was simply the factorial of the total number of cards. In the two-color
deck setting, this is the binomial coefficient of the two different amounts of cards
with distinct symbols.

9 Verification of Shuffle Set Size Maximality

In the following, we exploit the fact that the number of possible sequences
in a protocol state may be significantly smaller than the number of possible
permutations on the deck for the two-color setting. We therefore extend our
formal verification technique to additionally establish a formal guarantee that
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__CPROVER_assume (start[1] != start[0]);
__CPROVER_assume (start[3] != start[2]);
for (uint i = 4; i < N; i++) {
start[i] = nondet_uint();
__CPROVER_assume (0 < start[il]);
__CPROVER_assume (start[i] <= NUM_SYM);

N o oA W N e

}

Listing 4. Simplified start sequence assignment in the two-color deck for CBMC.

uint seqIldxl = nondet_uint();

uint seqIdx2 = nondet_uint();

__CPROVER_assume (seqldxl < seqldx2);

minState.sequence[seqldx1l] .probs = {1, 0}; // set probability to Xo
minState.sequence[seqldx2] .probs = {0, 1}; // set probadbility to X

struct state nextState = performShuffle(minState);
uint foundValidState = isValid(nextState);
assert (foundValidState);

© 0 N o o A W N e

Listing 5. Simplified maximality verification for CBMC.

it suffices to search protocols with a smaller permutation set size (i.e., also the
shuffle set size). Hence, the number of possible shuffles gets significantly smaller,
which reduces the work for the SBMC tool and thus leads to significantly smaller
running times.

We can write a simple program — via some simple adaptions from the program
in Section 7 — that serves as an input for the SBMC tool to verify the maximality
of a given shuffle set size. The shuffle operation from Listing 2 is adapted such
that we can specify a lower bound for the non-deterministic variable permSetSize.
We search for a single shuffle operation such that a valid output state is reached
from a “minimal state”, i.e., a state that has at most one 1-sequence and one
0-sequence (that should not be mixed together in the shuffle). In Listing 5 this
is done by setting the probabilities of two arbitrary distinct sequences in that
state to be the inverse of each other, i.e., (1 0) and (0 1). In the end, we check
whether, after performing a shuffle operation on this state, we can still reach a
valid state afterwards. Note that, since we are looking for worst-case maximality
bounds, it suffices to employ the output-possibilistic setting (see Definition 2)
which reduces the search complexity.

For the verification of a maximal shuffle set size, we can run the SBMC tool on
this program for various lower bounds for permSetSize until we find the smallest
value such that no valid state is reachable anymore. This gives us a guarantee
that larger shuffle set sizes cannot produce smaller protocol runs and we can
hence use this value for an upper bound on the shuffle set size in the approach
from Section 8.
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The described functionality in the C program is shown in Listing 5. Therein,
seqldxl and seqIdx2 are the non-deterministically chosen indices for the zero-
and one-sequence, which are assumed to be distinct. The minimal start state
is given by the variable minState (which contains an array of sequences). We
perform a non-deterministic shuffle operation on minState by calling the method
performShuffle. Finally, we ask the SBMC tool to check whether the produced
nextState is a valid state using the final assert statement.

Note that the results of this section in determining the maximal useful shuffle
set size hold not only for AND but also for all Boolean functions that have at
least two possible outputs. The results are summarized in Table 4.

Table 4. Running times for proving shuffle set size maximality. For some of the settings
with closedness requirement we specify ranges, which should indicate that the larger
range is already impossible due to the size restrictions of subgroups. See [N14a; N14b]
for reference.

#Cards Shuffles Shuffle Size Valid Shuffle #Var. #Clauses Time

STANDARD DECKS
4 - 12 v, cf. Figure 11 52 M 129 M 51.9 min
4 - 13 X 13.8 M 55.9 M 24 h
4 closed 12 v, cf. Figure 11 13.5 M 54.0 M 16.9 min
4 closed 13-24 X*

Two-COLOR DECKS
4 - 12 v, cf. Figure 10 1.5 M 6.1 M 54 sec
4 - 13 X 1.6 M 6.5 M 70 sec
4 closed 8 v, cf. Figure 10 1.4 M 5.0 M 69 sec
4 closed (9-)12 X 22 M 8.2 M 3.2 min
5 - 48 v 13.9 M 57.0 M 34h
5 - 49 X 14.2 M 58.1 M 114 h
5 closed 12 v 49 M 189 M 26.1 min
5  closed 20 70 91M  354M -
5 closed 24 7P 11.8 M 46.4 M -
5 closed 25-120 X© - - -

# As the largest proper subgroup is of size 12, there is nothing to show. (S creates L-sequences).
> This run did not finish in time, or ran into the self-set timeout bound of 5 days.
¢ >48 permutations is impossible even non-closed, and 60 is the only proper subgroup size >24.

As an example, see Figure 10 (left) for the maximal shuffle set size (of 12) that
is useful in four-card two-color protocols in general. Here, the shuffle starts from
a minimal 2-sequence state that was chosen arbitrarily and non-deterministically
by our SAT solver, but is likely to have maximal Hamming distance among their
sequences. For protocols using only closed shuffles, our method showed that this
bound is 8 permutations, as there is no larger closed permutation set that can
result in a valid state, cf. Figure 10 (right). These bounds are fully tight.

In the five-card two-color setting, closed protocols can make use of shuffle
groups of at most 24 permutations. It is an open question whether this is a tight
bound, but we know that there is a 12 element shuffle that is valid. However, it still
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SO0 X, ROV X,

O0%d X, Q0dd X,

(shuffle, {id, (3 4), (1 2), (1 2)(3 4), (shuffle, D™ := (132 4),(12)) =
(123),(1234),(1243),(124), {id, (12),(34),(12)(34),(13)(24),
(13),(134),(143),(14)}) (1324),(1423),(14)(23)})

K00 15X, KOO 15X,
Q0dd 15X, O0%d 13X,
QO 13X, Q& 13X,
Q00K 15X, Q00K 145X,
VRO 13X, VRO 15X,
FXTIVRYS'S AT IVRVSS

Fig. 10. Situation discovered by our formal method to find a minimal state and a
maximal permutation set (of size 12 (left) and 8 (right), respectively), such that
applying this shuffle to the minimal state does not generate an invalid state (with
L -sequences). Our method showed that larger shuffle sets (left) or groups (right) cannot
result in valid states, allowing us to reduce the shuffle set size in verification steps
without loosing generality. Here, D™ denotes a dihedral group of order 8.

3241 X,
4312 X,

(shuffle, A4 = (12 3),(12)(3 4)))

1234 /15X, 3124 115X, 1243 1pX; 3142 /15X,
1342 /15X, 3241 115X, 1324 11pX, 3214 /15X,
1423 115X, 3412 19Xy 1432 Y1oX; 3421 /55X,
2143 12Xy 4132 YioXo 2134 15X, 4123 49X,
2314 15Xy 4213 YioXo 2341 YpX; 4231 4oXy
2431 15Xy 4321 1oXo 2413 YppX, 4312 140X,

Fig. 11. Situation discovered by our formal method to find a minimal state and a
maximal permutation set (of size 12, namely the alternating group A4), such that
applying this shuffle to the minimal state does not generate an invalid state (with
L -sequences), in the standard deck setting.

allows us to restrict the maximal shuffle group size to 24 when searching protocols.
For this five-card case and arbitrary non-closed shuffle sets, the maximal shuffle
set size that does not introduce |-sequences on a minimal state is 48. This is a
tight bound.

Additionally, we have adapted this method to the standard deck setting
as well and have determined that the largest permutation set permissible in a
protocol on four cards is 12. This also holds for the closed case, i.e., there is a
group with 12 elements, namely the alternating group A4, that, if performed on
a minimal state, can result in a state that does not contain any |-sequences.

10 Conclusion
In this paper, we proposed a new method to search card-based protocols for

any secure computation, by giving a general formal translation applicable to be
used by the formal technique of software bounded model checking (SBMC). This
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method allows us to find new protocols automatically, and prove lower bounds
on required shuffle and turn operations for any protocol, and provide an example
for the computation of a minimal AND protocol. We also found a new protocol
that only uses the theoretical minimum of four distinguishable cards for an AND
computation. Moreover, we supported this finding by our automatic method in
showing the impossibility of any protocol using less shuffle and turn operations
using only practicable shuffles (random cuts). The protocol is hence optimal w.r.t.
the running time restriction “restart-free Las-Vegas”. For the four-card standard
deck setting, we showed that there is no finite runtime protocol, regardless of the
shuffle operations used. This result completes the picture of tight lower bounds
for the four-card setting. Additionally, we showed tight lower bounds on basis
conversions for single bits and proposed the missing protocols, and establish the
theorem that using a minimum of five cards, both input- and output-bases can
be chosen freely, which fosters our impossibility result for the four-card setting.

Finally, we extended our verification method to the case of decks using only
two colors, which is more common in the field of card-based cryptography. In
this setting, we were able to show two variants of a card-minimal Las Vegas
AND protocol to be also run-minimal, i.e., the protocol has a run of minimal
length. Moreover, for the case of 4 cards, we derived tight upper bounds on the
size of the maximal usable permutation set, of 12 and 8 for general and closed
protocols, respectively. As this is not restricted to AND protocols, but applies
more generally, we believe this to be of independent interest for researchers in
the field of card-based cryptography.

Open Problems. Let us point out some open problems in the card-based
security area that could be approached based on the findings in this paper:
(1) For finite-runtime protocols, there exist no proven tight lower bounds on the
required number of cards (five to eight cards). We recommend more research
applying computer-aided formal methods at this point, as the state space for
five or more cards is very large. (2) Our verification approach is fast for finding
protocols and/or lower bounds on the operations needed in a protocol for given
shuffle-restrictions. However, this is based on the assumption that protocols
exist already for a given predefined length to find or confirm impossibility
results. Investigating computer-aided formal methods for universal impossibility
results might be worthwhile. (3) The two most common settings in card-based
cryptography are the standard deck setting with only distinguishable cards and
the two-color decks using & and ©. However, it may be possible that by mixing
these settings (e.g., only distinguishable cards with one pair of identical cards),
we might find more efficient protocols (especially in the finite runtime setting).
For such a mixed setting, Shinagawa and Mizuki [SM19] provide nice results to
use in further research.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their detailed and helpful comments and suggestions.
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Appendix: Further Protocols

This appendix contains the 8-card AND protocol by Mizuki [M16] (Figure 12) and a
second four-card protocol which uses a number of 4.5 shuffles in expectation, which
are, however, non-closed and hence, more impractical to implement, cf. Figure 13.
Moreover, we have added a variant of the protocol by Abe et al. [AHM*18] where
we save one permutation step in the beginning, in Figure 14.

21 43 56 78 X1
21 34 56 78 X19
1243 56 78 Xo
12 3456 78 Xoo

l(shuffle. ((57)(6 8)))

214356 78 X1 2143 7856 X1y
213456 78 X719 2134 78 56 1pX1g
12 43 56 78 1oXoy 12 43 78 56 1/2Xo1
12 34 56 78 1oXoo 12 34 78 56 12X

l(shufﬂe, (3 4)(56)))

214356 78 /41Xy 21 3465 78 1/1X1y
213456 78 /1X10 2143 6578 /41X
12 43 56 78 /4Xo1 12 34 65 78 1/4X¢y
1234 56 78 1/aXoo 12 43 65 78 11X
2143 78 56 /4X1; 21 34 87 56 /41Xy
21347856 1/1X19 2143 8756 1/1X19
1243 78 56 14 X1 12 34 87 56 /14X
12 34 78 56 1/1Xoo 12 43 87 56 1/1Xoo

1 (turn, {3.4})

‘z?34?7-7/'.\:’ asrrn

2134 56 78 14X10 2143 56 78 14X,
12 34 56 78 1/5X00 12 43 56 78 1/4Xo;
21 34 78 56 12X 2143 78 56 14X,
12 34 78 56 1/aXoo | (Perm. (34)(56)) | 12 43 78 56 1/4 Xy
2134 65 78 1X1q 2143 65 78 1/1X1o
12 34 65 78 15X0, 12 43 65 78 1/4Xop
21 34 87 56 15Xy, 21 43 87 56 11X
12 34 87 56 /X0y 12 43 87 56 1/4Xq0

shuffle, (1 2)(5 7)(6 8)))

12 34 87 56 YaXo1 12 34 78 56 1/a(X10 + Xoo) 12 34 78 65 sXyy
2134 8756 14Xy, 21 34 78 56 1/a(X10 + Xoo) 21 34 78 65 /1 X0,
1234 65 78 YaXo1 12 34 56 78 1a(X10 + Xoo) 12 34 56 87 14X,
213465 78 1/aX11 21 34 56 78 1/a(X10 + Xoo) 21 34 56 87 1/4Xoq

| (turn, {1,2})

12777277 21777777
12 34 87 56 1/2Xo1 21 34 87 56 1oX11
12 34 65 78 15 Xo 21 34 65 78 X1y
1234 78 56 1/2(X10 + Xoo) 21 34 78 56 1/2(X10 + Xoo)
12 34 56 78 1/5(X10 + Xoo) 21 3456 78 1/5(X10 + Xoo)
12 34 78 65 15Xy, 21 34 78 65 1o X1
12 34 56 87 1Xy, 21 34 56 87 15Xq;
i(result, 7,8) i(result, 5,6)

Fig.12. The eight-card finite-runtime AND protocol by Mizuki [M16], with D =
[1,...,8] and uniform-closed shuffles. Output is in basis {5,6} or {7,8}, each with
probability 1/2.
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1234 Xoo
1243 Xo
2134 X1
2143 X

l(shume, {id, (1432)})

1234
1243
2134
2143
2341
2431
1342
1432

2 X00
/2Xo1
12X10
2 X1
12 X00
12 X1
12X10
X1

] (turn, {1})

1777 27?7
1234 Xoo 2341 Xoo
1243 Xy 143 123 2431 Xy
ot X e e, (143)  (perm,(123))_ 281 01
1432 X1y 2143 X1y

(shuffle, {id, (3 4), (142 :;)})L l(shuffle, {id, (23), (1243)})

1234 13(Xo0 + Xo1) 2341 1/5(Xoo + Xo1)
1243 1/3(Xo0 + Xo1) 2431 1/3(Xoo + Xo1)
1342 13X 30 2134 15X
1432 13X 2143 13X,
1324 13Xy 2314 13X
1423 13X 2413 13Xy
3421 1/3X00 4213 1/3X00
4321 X0y 3214 13X,
4231 13X 3241 143Xy
3241 15X 4231 15X,
(turn, {3}) (turn, {3})
2227 771%; ’\ 37
1243 Xoo + Xor |[ 1234 Xoo + Xo1 | [ 3421 Xoo 4213 X0 |[ 2341 Xoo + Xo1 | [ 2431 X0 + Xon
(perm, (2 4)) 1342 Xy 1231 Xy 4321 Xop 3214 X || 3241 Xy0 2134 X0 (perm. (12))
3241 Xy 1432 X1y 1324 X 2314 Xy || 2143 X1y 4231 X1
1423 X1y 2413 X1
(shuffle, {id, (24), (124 ?)})l \ﬂ\ /{/ l(shuffle, {(124),(72),(23)})
(perm, (121 perm, (14 2))
1243 13X, 1234 13X
1/sXo 4231 14X,
13X, 1432 13X,
13Xy 2431 13Xy
1/3(Xoo + Xo1) 2341 Y3(Xoo + Xo1)
23 15X 10 2314 13X
15X, 4321 15X,
(turn, {2}) (turn, {1})

4132 X + Xo1 2341 Xoo + Xo1 1234 Xy 4231 X,
4123 X0 2314 X9 1432 X, 4321 X,
result, 1,3) | (result,1,4) |3142 Xu 2431 X (result, 2,4) | (result, 2, 3),

(s@ﬂe. {id.(34).(132)}) (shuffle, {id. (3 4),(1 23)})

1/3Xo 2341 13X
/3 X0 2314 15X,
13 X11 2431 1/3Xy;
4 13X 2413 15X,
1/3(Xoo + Xo1) 4231 1/3(Xoo + Xo1)
/3 X10 1234 13X 10
15X 3241 15X,
(turn, {3}) (turn, {3})
727 224/,,: >\7;73?
1342 Xoo + Xo1 4132 X, 4123 X, 2341 X, 2314 X, 4231 Xoo + Xo1
1243 Xy 1432 X, 3124 X, 3241 X, 2413 X, 1234 Xy
3142 Xy, 2431 X3

éresu\t,?, 1) é)(result.él.l) éresult.li) é)(result.lél

Fig. 13. A four-card Las Vegas AND protocol with deck D = [1, 2, 3,4] and uniform
shuffles. Note that X¢ := Xoo + Xo1 + X10 and X7 := X11. The output is in one of the
bases {1,3},{1,4},{2,3},{3,4}, determined by the position of the final state in the
tree, and can be converted as needed.
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QOO X1,
QOO0 X1
SO00SO Xo;
SHOKOQ X

(shuffle, TI; := ((1 24 3 5)))

v
Q&OK0 15X, COhdO0 15X, (perm, (2 3))
QOB 15X, OO 15X0 | (ghyffle, IT,)
Q0RO 15X SOV 15X,
&O00& 15X, QO0RS 15X,
SRO00 15X, QROOM 15X,

y(tumn, {4})

Pr[??2707]= 3/3/"\1?[?7?&?] =2/5

(shuffle, TT;)

VORI 15X, ST VRS
*O0VK 15X, QURKY 1oX,
FYAVVVEVS'S Q00RO 15X,
VIYXVVRVE'S QU 12X

AOKOV 115X,

VROV 1/5X, (shuffle, (1 2)(3 4)))

VRORD 11X,
(IVZ ¥ AVIRVY. ¢!
&O0K00 1/, X,
SO0®O 1/,X0
QO0V&d 1/1.X
V&0V 1/,X,
Q0RO® 1/1X,

(turn,{1,2})
Pr[O0?77]

Pr[&Q?77] =1,

r[O&777]=1/4 15

OO0 X, CeO®0 X, (VI ¥ VD¢l
HOVKO X, Qa0 X, QO0V&d 12X,
L(result., 4,3) L(result,3,4) OOKO® 12X,

Fig. 14. A slightly shorter version of the five-card two-color Las Vegas AND protocol
with uniform closed shuffles given by Abe et al. [AHMT18]. Here, we save one initial
permutation step at the cost of using the slightly more complex shuffle I7; that is not
as easy to perform as just cutting the cards (albeit still a “random cut”, i.e., a cyclic
group generated by a cycle). As our counting method for the number of steps assumes
single-card turns, observe that the two-card turn step in the end can be split into two
single-card turns, where turning the first card can already result in the final state on
the left. Hence, its shortest run consists of only four steps. (This protocol version was
found when trying to prove the run-minimality of [AHM*18] w.r.t. closed five-card
two-color AND protocols — whether a protocol with these parameters and a run of only
three steps exists, remains open.)
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