
Computational Arithmetic Secret
Sharing and Secure Multiparty

Computation

Diploma Thesis of

Alexander Koch

At the Department of Informatics,
Institute of Theoretical Informatics

and the Department of Mathematics,
Institute for Algebra and Geometry

Reviewers: Jun.-Prof. Dr. Dennis Hofheinz
PD Dr. Stefan Kühnlein

Time Period: July 2013 – March 2014

KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association www.kit.edu

Danksagung
Ich möchte mich an dieser Stelle ganz herzlich bei meinen beiden Betreuern Jun.-Prof.
Dr. Dennis Hofheinz und PD Dr. Stefan Kühnlein für hilfreiche Diskussionen und
Anmerkungen bedanken, die zum Entstehen dieser Arbeit entscheidend beigetragen
haben. Die eingeräumten Freiheiten bei der Festlegung und Weiterentwicklung des
Themas habe ich sehr zu schätzen gewusst. Ich danke auch Prof. Dr. Jörn Müller-Quade
für die Übernahme der Zweitkorrektur.
Während meiner Studienzeit und der Anfertigung dieser Arbeit haben mich noch

weitere Personen unterstützt. Hier möchte ich vor allem Oliver Thomas, Daniel Mendler
und Thomas Grombein dankend erwähnen. Des Weiteren möchte ich meiner Familie
danken, die mir Kraft und den nötigen Rückhalt gegeben hat. Abschließend danke
ich auch der Studienstiftung des deutschen Volkes für ihre hilfreiche und vielseitige
Unterstützung.

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my
own work, unless otherwise acknowledged in the text.

Karlsruhe, March 18, 2014.

Abstract

Secret sharing schemes allow for sharing a secret message so that it can be correctly
reconstructed in the presence of enough of its shares, but with the property that
nothing can be learned about its content if too few of the shares have been obtained.
Homomorphic schemes exhibit the additional property that it is possible to calculate on
the shares to obtain a share of the sums and products of secrets—yielding a plethora of
applications, including so-called secure multiparty computation (MPC). With MPC,
several parties can jointly compute an arbitrary function, without learning anything
about the input values of the other parties.
To reduce the size of the generated shares in a secret sharing scheme, so-called

“computational” variants have been developed which guarantee secrecy for illegitimate
access to the secret only against adversaries that are bounded in their computation
time by a polynomial in the input length. While these schemes are much more efficient
with respect to their share size, they have the disadvantage of not being homomorphic.
In this thesis, we develop a secret sharing scheme on the basis of fully homomorphic
encryption, that combines the advantages of both worlds. It is therefore space efficient
and allows for calculation on the shares of a secret. For this, the used encryption scheme
needs to be homomorphic also with respect to ciphertexts which are encrypted under
different cryptographic keys. Because of this, we include a proof of this property for an
improved variant of such an encryption scheme.
The second part of the thesis starts with an introduction to the theory of algebraic

function fields and algebraic geometric codes. For these, the Riemann–Roch theorem is
central, and is therefore illustrated in this context. The basis of this part is the paper
of Cascudo, Cramer, and Xing [CCX12b], who construct an infinite family of so-called
d-arithmetic (i. e. compatible with d-fold multiplications) secret sharing schemes with
good asymptotic properties. The construction of the underlying codes is achieved by
infinite class field towers with the help of a group theoretic argument by Golod and
Šafarevič. To ensure that these are well-suited for the purpose of secret sharing, the
defining divisors are determined by so-called Riemann–Roch systems of equations. These
systems are a generalization of previous methods and allow for taking the d-torsion of
the zero divisor class group into account.

The so-constructed d-arithmetic secret sharing schemes are moreover used as a building
block for the construction of the computational d-arithmetic scheme. Afterwards, it is
described how it can be used to obtain a protocol for MPC, although it does not have
the same linearity property usually found in the literature. Moreover, the connection of
the notions used in the field of provable security and the ones used in algebraic coding
theory, is highlighted.

v

Zusammenfassung
Geheimnisteilverfahren ermöglichen es, eine geheime Nachricht so aufzuteilen, dass
diese an Hand einer ausreichenden Anzahl an Teilen korrekt rekonstruiert werden
kann, nichts jedoch über dessen Inhalt in Erfahrung zu bringen ist, falls zu wenige Teile
vorhanden sind. Homomorphe Verfahren erlauben es zudem, auf den Teilen Berechnungen
durchzuführen um dadurch Teile der Summen und Produkte von Geheimnissen zu
erhalten – und lassen dadurch eine Vielzahl an Anwendungen zu, darunter auch die
sogenannte sichere Mehrparteienberechnung. Bei dieser können unterschiedliche Parteien
gemeinsam eine beliebige Funktion berechnen, ohne dass sie etwas über die Eingabewerte
der jeweils Anderen erfahren.
Um die Größe der erzeugten Teile in einem Geheimnisteilverfahren zu reduzieren,

wurden sogenannte „computational“-sichere Varianten entwickelt, die den Schutz vor
einer illegitimen Aufdeckung des Geheimnisses nur gegen Angreifer garantieren, deren
Berechnungszeit durch ein Polynom in der Länge der Eingabe begrenzt ist. Während diese
Verfahren in Bezug auf den Speicherplatzbedarf deutlich effizienter sind, haben sie jedoch
den Nachteil, nicht die genannten homomorphen Eigenschaften aufzuweisen. In dieser
Arbeit wird auf der Basis vollhomomorpher Verschlüsselung ein Geheimnisteilverfahren
entwickelt, dass beide Vorteile vereint und somit speicherplatzeffizient ist, aber dennoch
die Möglichkeit einräumt auf den Teilen der Geheimnisse rechnen zu können. Dafür
benötigt das Verschlüsselungsverfahren die Homomorphie-Eigenschaft auch für Chiffrate,
die mit unterschiedlichen Schlüsseln erzeugt wurden. Aus diesem Grund schließt die
Arbeit ein Nachweis dieser Eigenschaft für eine verbesserte Variante eines solchen
Verschlüsselungsverfahrens ein.

Der zweite Teil der Arbeit führt zunächst in die Theorie der algebraischen Funk-
tionenkörper und den darauf basierenden algebraisch-geometrischen Codes ein. Für
diese ist der Riemann-Roch’sche Satz zentral, der im Zuge einer Einführung erläutert
wird. Grundlage des Teils bildet eine Veröffentlichung von Cascudo, Cramer und Xing
[CCX12b], in der eine unendliche Familie von homomorphen, bzw. „d-arithmetischen“
(d. h. mit d-fachen Multiplikationen kompatiblen) Geheimnisteilverfahren mit asympto-
tisch guten Eigenschaften konstruiert wird. Die Konstruktion des zugrundeliegenden
Codes erfolgt dabei an Hand unendlicher Klassenkörpertürme unter Ausnutzung ei-
nes gruppentheoretischen Arguments von Golod und Šafarevič. Damit dieser für den
Zweck der Geheimnisteilung geeignet ist, werden dessen definierende Divisoren auf der
Grundlage eines sogenannten Riemann-Roch-Gleichungssystems gewählt. Diese Systeme
bilden eine Verallgemeinerung bisheriger Verfahren und ermöglichen es, die d-Torsion
der Grad-Null-Divisorenklassengruppe einzubeziehen.

Die so konstruierten d-arithmetischen Geheimnisteilverfahren werden zudem als Bau-
stein für die Konstruktion des oben genannten computational-sicheren d-arithmetischen
Verfahrens eingesetzt. Im Nachgang wird beschrieben, wie dieses Verfahren, dessen
Linearität von der in der Literatur üblichen Definition abweicht, für die sichere Mehr-
parteienberechnung eingesetzt werden kann. Darüber hinaus wurde darauf geachtet, den
Zusammenhang zwischen den an den Anforderungen beweisbarer Sicherheit orientierten
Begriffen und der algebraisch formulierten Codierungstheorie herauszustellen.

vi

Contents

Introduction ix

1 Preliminaries 1
1.1 Secret Sharing Schemes . 1
1.2 Linear and Multiplicative Secret Sharing Schemes 4

1.2.1 Multiplicative Secret Sharing . 6
1.2.2 Games for Homomorphic Secret Sharing Schemes 8

1.3 Universal Composability . 12
1.4 Linear Distributed Commitments . 13
1.5 Secure Multiparty Computation . 16
1.6 Homomorphic Encryption . 17

1.6.1 A Multikey FHE-scheme based on NTRU 20

2 Computational Arithmetic Secret Sharing 27
2.1 Construction of an Arithmetic CSS Scheme 27

2.1.1 Arithmetic Properties of the Scheme 33
2.2 Secure Multiparty Computation based on CSS 36

3 Algebraic Geometric Secret Sharing 37
3.1 Preliminaries . 37

3.1.1 The Riemann–Roch Theorem . 38
3.1.2 Geometric Goppa Codes . 40

3.2 Infinite Class Field Towers . 41
3.3 Riemann–Roch System of Equations . 49
3.4 Torsion Limit . 51
3.5 Arithmetic Secret Sharing Schemes . 51

3.5.1 Construction of Arithmetic SSS 53

4 Conclusion 57

Glossary of Symbols 59

Bibliography 63

vii

Introduction

Keeping a secret secure involves two tasks at the same time. First, you have to make
sure that no-one can get hold of the secret and second you have to store it in a way
that it cannot get lost. The obvious solutions to both problems seem to contradict
each other, that is hiding a secret would make it small and inaccessible which is in
opposition to making it redundant and storing it in different places. This becomes clear
in a corporate setting where giving an essential cryptographic key to only one person
might lead to a total loss of data once the person becomes unavailable, while giving the
key to larger number of employees will make it more likely to leak.
Shamir [S79] and Blakley [B79] came up with an elegant solution to this problem: a

secret sharing scheme (SSS). In such a scheme, so-called shares are generated from the
secret and distributed to different players. However, each player individually cannot
learn the secret from his share, but a (pre-specified) set of shares are needed for the
reconstruction of the secret. In an (n, t)-threshold scheme, any t out of n shares can
reconstruct the secret, but with less, nothing about the secret can be learned. Thereby
we get both, redundancy as loss of up to n− t shares can be coped with, and secrecy,
as at least t shares have to leak to get hold of the secret.

In short, Shamir’s scheme works by randomly drawing the coefficients of a polynomial
of degree t over Fq (q > n a prime-power) and setting the secret as its constant term. The
n shares are generated by evaluating the polynomial at publicly known (non-zero) places
and distributed by the dealer of the scheme. The reconstruction works as an application
of Lagrange’s interpolation theorem, as the polynomial is completely determined by a
set of t+ 1 shares, i. e., points of the polynomial, but the value at the place zero can
still be chosen freely if no more than t shares are given. A more complete description is
given in Section 1.1.
Shamir’s secret sharing scheme has been improved and generalized in several ways

and in this process it has become clear that quite a number of applications can be
based on secret sharing. Beimel [B11] gives an excellent survey on the topic and
names secure multiparty computation (MPC), Byzantine agreement, attribute-based
encryption, and generalized oblivious transfer as prominent applications. For more
general access conditions, we can formulate the reconstructability in terms of qualified
coalitions of the players. Such a collection A ⊆ P(P) of qualified subsets of the player
set P specifies which coalitions of participants are able to recover the secret from their
shares. Moreover, a second collection B ⊆ P(P) of unqualified subsets specifies the
coalitions not able to reconstruct the secret, due to the secrecy condition of the scheme.
We call (A,B) an access structure and note that they are monotone, because if a player
set in A can access the secret, then so does any superset, and analogously if a player set
in B cannot learn anything about the secret, then so does any of its subsets. Therefore,

ix

Introduction

it suffices to specify the min terms of A and the max terms of B. A scheme and its access
structure are called perfect, if B = A. For a well-written survey on the combinatorial
aspects of access structures see [P12].
Ito, Saito, and Nishizeki [ISN89] gave the first construction of these general, perfect

schemes, but the size of the shares given to each player may be exponential in the number
of participants. Later, Benaloh and Leichter [BL90] improved this with a recursive
construction on a (monotone) formula defining A. Any access structure can be given as
such a formula, but as the number of monotone formulas is doubly exponential in the
number of participants, only those secret sharing schemes given by a small formula are
efficient. Here, we call a scheme efficient, if the size of its shares is polynomial in the
number of participants.
Because secret sharing schemes are mostly used in homomorphic settings such as

MPC, nearly all schemes devised so far are linear secret sharing schemes (LSSS) over a
finite field Fq, where the reconstruction and distribution functions are linear over Fq.
These schemes have been shown to be equivalent in [KW93; B96] to so-called monotone
span programs (MSP), which can be seen as a labeled matrix representation. Note that
these can also be defined over general rings instead of finite fields, leading to a similar
correspondence of secret sharing schemes over a ring R and MSPs over the integers
[C+03; CF02]. Here, only black-box access to addition, multiplication and random
sampling methods of R are required.
One issue in the theory of secret sharing is its space efficiency or information rate.

While there are several ways to weaken the security of the scheme to obtain an improved
space efficiency, not all are practical for usual applications of secret sharing. For instance,
so-called computational secret sharing (CSS) schemes—where an unqualified player set
can learn something about the secret, if they would be able to break the security of an
encryption scheme—are space-optimal but have the downside of not being sufficiently
homomorphic, which makes them impractical for the use in higher-order protocols
like MPC. We aim to overcome this limitation by using the recently developed fully
homomorphic encryption (FHE) schemes.
Speaking of efficiency, a small MSP leads to an efficient LSSS. Moreover, there are

some access structures for which the MSP representation is much smaller than the
formula representation. This gives constructions of efficient schemes for an enlarged
number of access structures.

The space efficiency of a secret sharing scheme is given by its information ratio, which
can be defined as the ratio of the length of the longest share and the length of the
secret. While it is conjectured [B11] that there are perfect access structures which admit
schemes only with an information ratio exponential in n, the best currently known
lower bound is Ω(n/logn), as shown by Csirmaz [C97]. However, due to its equivalence
to MSP it has been shown by Gàl [G01] that for the special case of LSSS there is a
superpolynomial 2O(logn) lower bound. Note that in perfect secret sharing schemes, any
share is as least as large as the secret. If all shares are exactly the size of the secret,
that is, the information ratio is 1, the scheme is called ideal. These schemes have been
characterized in terms of matroids, see [P12] for reference.

x

When the total amount of data exchanged is at least n times the secret size, the
scheme becomes impractical for large secrets. One way to overcome this limitation
is to consider non-perfect secret sharing schemes, where no secrecy or reconstruction
guarantees are made for coalitions neither in A, nor in B. The most extreme case
is an information dispersal algorithm (IDA), which is a secret sharing scheme with
B = ∅, first defined by Rabin [R89]. For A = At, where At is the collection of sets
with cardinality t, it holds that the information ratio is 1/t, which is the theoretical
optimum. Another approach to overcome the problem of efficiency is to lower the
general secrecy requirements. While in usual schemes information-theoretic privacy
is assumed, we devise schemes which only guarantee secrecy against computationally
bounded attackers. These computational secret sharing (CSS) schemes protect against
polynomially bounded probabilistic attackers and were first defined by Krawczyk [K94]
for the threshold case. Béguin and Cresti [BC95] later generalized the construction to
arbitrary perfect access structures. The efficiency of computationally secure schemes
resemble those of information dispersal algorithms, plus a small term which depends
only on the security parameter. Therefore, CSS schemes are much more efficient than
their information-theoretic counterparts. For a formulation of the corresponding security
notions, Bellare and Rogaway [BR07] present a modern provable-security approach to
CSS which also aims to improve the original scheme of [K94].

Moreover, in most practical settings, other cryptographic primitives such as encryption
or pseudorandom functions are used in the surrounding protocol, for which security
is based on the same weaker assumptions. Therefore, it makes perfect sense to prefer
computational secret sharing over schemes which are secure in the information-theoretic
sense in these settings. The construction given in [K94; BC95] is a simple combination
of encryption and information dispersal: First, the secret is encrypted with a secret
key, which is shared by a perfect information-theoretically secure scheme, while the
encrypted secret is distributed through the size-optimal IDA. While we devise this
variant in a homomorphic way, we include also an analysis of the variant which first
shares the secret and encrypts it afterwards.
Secret sharing schemes can be seen as a simple primitive to construct verifiable

secret sharing (VSS) schemes and secure multiparty computation protocols (MPC), i. e.,
protocols where n players jointly compute a previously agreed function on their inputs
and during the process have a guarantee of the privacy of their inputs and correctness
of the result if not too many players try to cheat. Cramer, Damgård, and Maurer
[CDM00] showed that any perfect LSSS can be transformed into a multiplicative one
(which allows running a multiplication protocol) while only doubling its size. Moreover,
from any perfect LSSS for which the access structure fulfills certain conditions, a generic
construction for VSS and MPC protocols is given. In [C+03] this is extended to secret
sharing schemes over arbitrary rings. An alternative version of such a construction of
MPC is given by [M03], which uses less preconditions on the side of the secret sharing
scheme. As the schemes devised in this thesis satisfy a slightly weaker version of linearity
(namely its reconstruction map, but not necessarily its share map is linear) and the
results of [CDM00; C+03] only hold for LSSS with a linear share map, we point out a
construction of these protocols in our setting.

xi

Introduction

For our construction of homomorphic CSS schemes, we use fully homomorphic
encryption schemes (FHE), i. e., encryption schemes which admit any arithmetic circuit
to be executed on the input ciphertexts by a special Eval-function of the scheme. After
decryption, the resulting plaintext is the outcome of the circuit executed on the input
plaintexts. López-Alt, Tromer, and Vaikuntanathan [LTV12] showed that this is possible
even for plaintexts encrypted under different keys and devised a so-called multikey FHE
based on NTRU. An improved, but non-multikey version of their scheme was recently
given by Bos et al. [B+13].
For the second part of the thesis, we note that LSSS over a finite field can also be

based on algebraic geometric codes. For example, Chen and Cramer [CC06] constructed
LSSS over Fq based on these codes. Their scheme is strongly multiplicative and can
be used for MPC, without the restriction of n > q as in Shamir’s scheme. Subsequent
work [C+08; C+09; CCX11] improved on these results. They are analyzed in Chapter 3,
and we refer to the beginning of the chapter for a more thorough introduction.

Contribution
• Creation of the first computational secret sharing scheme with homomorphic prop-
erties, such as strong multiplicativity and arithmetic secret sharing. (Chapter 2)

• The scheme is suitable for passively secure multiparty computation. Moreover,
we point out a method to turn it into the full adaptively secure version using
replicated secret sharing. (Section 2.2)

• Review of the literature on secret sharing and algebraic geometric codes with
focus on the question of Riemann–Roch equation systems for the construction of
asymptotically good secret sharing schemes. (Chapter 3)

• Description of a slightly generalized version of linear and arithmetic secret sharing
schemes in terms of a provable-security framework. (Section 1.2)

• Deduction of refined noise bounds for the multi-key variant of a fully homomorphic
encryption scheme. (Section 1.6.1)

Related Work
Kikuchi et al. [K+13] try to combine the share efficiency of a CSS scheme with the
homomorphism properties of LSSS by using a conversion protocol between the two
worlds. Their scope is different as they do not devise a homomorphic CSS scheme but
instead use a non-linear CSS for storing the secret and convert it to a LSSS in the
event that a calculation is to be performed on the shares. For this, they use the share
conversion method of Cramer, Damgård, and Ishai [CDI05].
As homomorphic properties are difficult to achieve for CSS schemes, an analysis of

computational VSS schemes by Backes, Kate, and Patra [BKP11] showed that they
could as well be based on non-homomorphic commitments.

xii

Furthermore, Tate, Vishwanathan, and Weeks [TVW13] look into the question of
encrypting shares consistently with a public key encryption scheme and introduce the
method of plaintext randomization to make their formal proofs rigorous.

Moreover, note that MPC can be based directly on fully homomorphic encryption, as
in [LTV12], who devise a scheme which minimizes interaction during the computation
to the starting and reconstruction phase of the protocol, using a multikey FHE scheme.
In this context, we also refer to [A+12] for an MPC protocol based on FHE.

Outline
In Chapter 1 we review some preliminaries of secret sharing with a focus on homomorphic
properties and computational secret sharing. Furthermore we present the relevant part
of the literature on fully homomorphic encryption and their multikey variants. In
Chapter 2 we then give our construction of the first homomorphic CSS scheme and
point out how it can be used in VSS and MPC protocols. In Chapter 3 we introduce the
reader to basic results on algebraic function fields including the Riemann–Roch theorem
and review the relevant literature of secret sharing schemes based on algebraic geometry
codes. We take special care on an construction aspect of the codes used in [CCX11]. In
the last chapter we conclude our research and look into the question of future work.

xiii

1 Preliminaries
In this chapter, we introduce basic notions of secret sharing in a provable security
framework, including linearity and multiplicativity, in a slightly generalized version,
which is fitted for our construction in the later part of the thesis. Furthermore, we present
central notions of secure multiparty computation, including the universal composability
framework of Canetti [C01] as reviewed in [CD05] in Sections 1.3 to 1.5. Finally,
homomorphic encryption is introduced in Section 1.6, as it is a key component for our
construction in Chapter 2.
For notation, we write vectors in bold, sT denotes the vector restricted to index

set T ⊆ I. We denote the length of a string m as |m| and write 1κ for the string of
length κ consisting of only the letter 1. If χ is a probability distribution, we write
x← χ to indicate that x is sampled from χ. Analogously by x← S we state that x is
sampled according to the uniform distribution on the set S. In the same fashion, we
write x← A(·), if x is the outcome of a possibly randomized algorithm A. Furthermore,
we denote with negl(κ) a function which is negligible in κ, i. e., it is less than 1/p(κ) for
any polynomial p and sufficiently large κ. We assume that N includes zero. Note that
whenever we speak of a ring, we assume that it is commutative and with 1.

1.1 Secret Sharing Schemes
In this section we introduce secret sharing schemes and their properties. In our
presentation we mostly follow the definitions of Bellare and Rogaway [BR07], who
suggested a powerful framework of modern provable-security secret sharing incorporating
a number of notions defined in the field. We recommend [B11] as a comprehensive
survey on secret sharing schemes with information-theoretic privacy.
Let P = {P1, . . . , Pn} be a set of players. An n-player distribution scheme with

message spaceM and share spaces S1, . . . ,Sn is a pair Σ = (Sh,Rec), where
1. Sh : M→ ∏n

i=1 Si is a probabilistic algorithm returning an n-vector s on input
m ∈M,

2. Rec : ∏n
i=1(Si ∪ {♦}) × {0, . . . , n} → M ∪ {⊥} is a deterministic algorithm re-

turning a value m on input (s, j), where j ∈ {0, . . . , n} specifies whether an
honest participant Pj , j ∈ {1, . . . , n} does the reconstruction, or whether external
reconstruction is performed, if j = 0. The entries of the vector s may contain a
distinguished sign ♦ to indicate that the entry is omitted in the reconstruction
process. If Rec is unable to reconstruct an m ∈M, it returns ⊥.

A so-called dealer uses the distribution scheme Σ to generate a share vector s from a
message m ∈M and then sends entry si to player Pi. If the players wish to reconstruct

1

1 Preliminaries

the secret afterwards, they gather enough shares needed for reconstruction and then
a player Pj runs the reconstruction procedure Rec(s, j) to retain the original message.
Lost shares or shares omitted in the gathering process are denoted by ♦.
The second argument in the Rec algorithm is given to model the difference between

internal and external reconstruction: when reconstruction is done by a participant, he
has more information than an external party, as he knows that he himself is honest.
However, this plays a role in robust reconstruction guarantees only, cf. Definition 1.2.
A distribution scheme with certain privacy and reconstruction guarantees is called

a secret sharing scheme (SSS). Before we turn to a formal definition, we are in need
of a way to express these guarantees in mathematical terms. Therefore, let P be the
set of players and denote its powerset by P(P). We define the access structure of a
secret sharing scheme on P as a pair (A,B), where A ⊆ P(P) contains the qualified
and B ⊆ P(P) the unqualified player coalitions and A ∩ B = ∅. That is, any collection
of players X ∈ P(P) can either jointly reconstruct a shared secret, if X ∈ A, or it
should not be possible for them to learn anything about the secret (in a sense specified
later), if X ∈ B. Note that in order to guarantee that the distributed message can be
reconstructed at all, we require that P ∈ A.

A scheme and its access structure are called perfect, if B = A. In non-perfect schemes,
it is possible that X is neither in A nor in B; in this case nothing can be said in advance
about the ability to learn or reconstruct the secret. Note that for any access structure
Γ = (A,B), A is monotonically increasing and B is monotonically decreasing, due to
the nature of secret sharing. Therefore, it suffices to specify the minimal qualified sets
of A and the maximal unqualified sets of B, denoted as minA and maxB, respectively.
An important special case of these structures are threshold access structures, where any
set with r ≥ 1 or more elements can reconstruct the message, while no set of less than
or equal to t elements is qualified. We denote it by Γ(t, r).
While access structures are essential and classical in the definition of secret sharing

properties, we follow [BR07] in looking at the topic from a modern provable-security
standpoint. Therefore, we use adversaries represented by Turing machines (TMs) which
try to break the guarantees of the secret sharing in a game-based approach, to specify
the exact security conditions. An adversary is called probabilistic polynomial time
(PPT), if it may use randomness and is polynomially time-bounded in the input length.
During the game, the adversary may use a corruption oracle which allows it to obtain
the share of the specified players.

With respect to the access structure of a secret sharing scheme, we can now define an
adversary as a TM which tries to violate certain guarantees of the scheme in a game-like
setting. So we define a B-privacy adversary A to be an adversary as in Experiment 1.1,
who tries to distinguish two self-chosen equal-length messages by only looking at the
shares of a set of players that it is allowed to corrupt, i. e., of a set in B. Its advantage
in the game of Experiment 1.1, relative to the security parameter κ, is denoted as
Advpriv

Σ,A(κ).
Analogously, we define an A-reconstruction adversary A to be an adversary as in

Experiment 1.2, trying to prohibit the correct reconstruction of the message, by removing
shares or injecting new share values for players it may corrupt. This is specified by

2

1.1 Secret Sharing Schemes

A, namely, A must leave at least one set in A uncorrupted. Moreover, to model the
reconstruction as done by a honest player, who can be sure that his share is correct, A
may output additionally a player index j. For the adversary definition, we require that
if j 6= 0, the share of player Pj is unchanged. We define the advantage of A in the game
of Experiment 1.2 relative to the security parameter κ as Advrec

Σ,A(κ).
For some adversary models, this is too powerful. For a weaker version of a B-recon-

struction adversary, consider the restriction that A may only learn and erase the shares
of a player upon corruption. In formal terms, for such an adversary it holds that s′i∈T
of Experiment 1.2 is in {si,♦}. In this case, we call A an B-reconstruction erasure
adversary—in opposition to substituting adversaries, who may inject an arbitrary share
to corrupted players.
For the formal definitions of the adversaries’ advantage, we set

Advpriv
Σ,A(κ) := 2 · Pr

[
Exppriv

Σ,A(κ) = 1
]− 1, and (1.1)

Advrec
Σ,B(κ) := 2 · Pr

[
Exprec

Σ,B(κ) = 1
]− 1, (1.2)

where Exppriv
Σ,A(κ) and Exprec

Σ,B(κ) are defined in Experiment 1.1 and Experiment 1.2,
respectively. In both cases, a call of the corruption oracle corrupt(s, i) adds player Pi to
the set T of corrupted players and returns Pi’s share of the secret.

Definition 1.1. An n-player secret sharing scheme is a distribution scheme Σ =
(Sh,Rec) with access structure Γ = (A,B), satisfying the following conditions:

Privacy. For any B-privacy adversary A it holds
• Advpriv

Σ,A(κ) = 0 for perfect (information-theoretic) privacy.

• Advpriv
Σ,A(κ) = negl(κ) for statistical privacy.

• Advpriv
Σ,A(κ) = negl(κ) if A is PPT, for computational privacy.

Reconstructability. For any A-reconstruction erasure adversary A it holds
• Advrec

Σ,A(κ) = 0.

Note that we distinguish two types of perfectness. As specified above, Γ = (A,B) is
called perfect, if A = B. However, we also call the privacy of Σ perfect, if Advpriv

Σ,A(κ) = 0.
In the first case, we call Σ perfect, in the second case, we call Σ a perfect-privacy SSS.
Moreover, to guarantee reconstruction in the presence of substitution adversaries, we
also give the corresponding definitions for robust secret sharing.

Definition 1.2 (Robust secret sharing). Let Σ be an n-player secret sharing scheme
as in Definition 1.1. Σ is called robust if additionally the following holds.

Robust reconstructability. For any A-reconstruction (substituting) adversary A it holds
• Advrec

Σ,A(κ) = 0 for perfect robustness.
• Advrec

Σ,A(κ) = negl(κ) for statistical robustness.

3

1 Preliminaries

(m0,m1, state)← A1(1κ)
b ← {0, 1}
s ← Sh(mb)
b∗ ← Acorrupt(s,·)

2 (1κ, state)
if b = b∗ then

return 1
else

return 0
Experiment 1.1. The priv experiment of secret sharing scheme Σ with adversary
A = (A1, A2) challenged to compromise the privacy of Σ by distinguishing the sharing
of one of two equal-length, self-chosen secrets, corrupting only players of a set in B. To
allow a PPT adversary, which is polynomially bounded in its input length, a number
of steps polynomial in the security parameter κ, we pass it a unary coding of κ. The
convention to write the oracle map in the exponent of the adversary is used to indicate
its availability towards the adversary.

• Advrec
Σ,A(κ) = negl(κ) if A is PPT, for computational robustness.

Although robust secret sharing has stronger reconstructability guarantees, this notion
does not provide security against a dishonest dealer. For example, the dealer might
distribute shares that cannot be reconstructed to any valid secret, or he might implement
a way to corrupt shares for the reconstruction to reveal a different secret. As secret
sharing is often used as part of a larger protocol, e. g., in establishing secure multiparty
computation (MPC) against active adversaries, each player may assume the dealer role
in different steps of the protocol. To overcome the problems with dishonest dealers in
MPC protocols, the dealer has to commit to having shared a certain value, resulting in
verifiable secret sharing (VSS) schemes, as described in Section 1.4.

1.2 Linear and Multiplicative Secret Sharing Schemes
Most of the currently devised secret sharing schemes are linear secret sharing schemes
over a finite field or a ring, due to its suitability for applications, such as secure multiparty
computation. In such schemes, linear operations on the shares are compatible with the
sharing and are preserved upon reconstruction. We formally define it as follows.
Let Σ = (Sh,Rec) be an n-player secret sharing scheme with message spaceM and

share spaces S1, . . . ,Sn. We set S := ∏
i Si. Formally, we call Σ a linear secret sharing

scheme (LSSS) for M over Λ, if Λ is an associative R-algebra, i. e., R is a ring and
there is a ring homomorphism ϕ : R → Λ, M is a finitely-generated Λ-module, Si
(i = 1, . . . , n) are finitely-generated R-modules and for all a ∈ R, s, s′ ∈ S in the image
of Sh, and j ∈ {0, . . . , n}, we have

Rec
(
a · s+ s′, j

)
= ϕ(a) · Rec(s, j) + Rec

(
s′, j

)
.

4

1.2 Linear and Multiplicative Secret Sharing Schemes

(m, state)← A1(1κ)
s← Sh(m)
(s′, j)← Acorrupt(s,·)

2 (1κ,m, state)
if Rec

(
sT t s′T , j

) 6= m then
return 1

else
return 0

Experiment 1.2. The rec experiment of secret sharing scheme Σ with adversary A =
(A1, A2) aiming at preventing the correct reconstruction of a self-chosen secret, leaving
at least a set of players in A uncorrupted. Note that T is the set of corrupted players,
and j is an uncorrupted player the adversary may point out explicitly, depending on
the security notion. If j = 0, an external reconstruction has to be performed, leading
to stronger guarantees; see [BR07] for details. Note that sT t s′T is the vector x with
xi = si if i /∈ T and xi = s′i if i ∈ T .

Written in more algebraic terms, we can express this as the property that

Rec(·, j)
∣∣
im Sh : S → ϕ∗(M)

is an R-linear map for any j ∈ {0, . . . , n}, where, ϕ∗(M) denotes the restriction of
scalars ofM, i. e.,M with the same additive group, but with R-scalar multiplication
R ×M → M, (a, s) 7→ ϕ(a)s. Here, we restrict Rec to the image of Sh to avoid an
algebraic treatment of the empty share sign ♦, although it is still assumed linear when
projected to the components which do not contain ♦, provided that reconstruction is
possible.

As Sh is a probabilistic algorithm, we can also make the used randomness explicit by
looking at the corresponding deterministic algorithm Sh : M×R→ S, where r ∈ R is
sampled according to the uniform random distribution on the set R. Note that we will
assume that R is a finitely-generated and free Λ-module.

Remark 1.1. In the case usually found in the literature, we have that R = Λ, ϕ = idR
and Rec(·, j)

∣∣
im Sh is an R-linear map of free and finitely-generated R-modules. This

implies that there is an equivalent LSSS of the same size, such that also Sh : M×R→ S
is an R-linear map. The so-obtained Sh is a section for Rec, i. e., a linear map such that
Rec(·, j) ◦ Sh = idM, which always exists for free (or projective) modules. For the case
of R a field, compare also [B96]. These linear schemes over rings or fields are equivalent
to so-called monotone span programs defined in [KW93], as shown in [B96] and [CF02],
respectively.
However, it is important to note that this is no longer the case in our more general

setting. This can be seen in the case where M = Λ and S = R, as the R-module
homomorphism ϕ : S → M need not have a section. To see this, letM = Z/2Z and
S = Z/4Z. Any s : M→ S would have to send 1 7→ 2 as 2 is the only element of order
two in S, but ϕ(2) = ϕ(1) + ϕ(1) = 0, hence ϕ ◦ s = 0 6= idM.

5

1 Preliminaries

Remark 1.2. Let Σ = (Sh,Rec) be an n-player SSS with message spaceM and access
structure Γ = (A,B). Note that because of P ∈ A, the reconstruction property of
the SSS implies that Rec(·, j) ◦ Sh = idM, for j ∈ {0, . . . , n}. Moreover, ifM and Si
fulfill the same conditions as in the definition of LSSS, and Sh is a linear map, then the
reconstruction map Rec(·, j)

∣∣
im Sh : S →M is also linear, for any j ∈ {0, . . . , n}.

We have the following classical example of an LSSS, namely the scheme of Shamir
[S79], modified with an additional condition on the ωi to also work for rings, cf. [C+03,
Proposition 1].
Example 1.1 (Shamir’s scheme for rings). Let R be a ring without zero divisors
and R× denote its invertible elements. We assume there exist ω1, . . . , ωn ∈ R× with
ωi−ωj ∈ R× for all i 6= j. Then there is a LSSS over R for Γ = Γ(t, n− t), which works
as follows.
In order to share a secret m ∈ R the dealer chooses a1, . . . , at−1 ← R uniformly at

random and defines a polynomial p ∈ R[T] of degree t− 1 as p := m+∑t−1
i=1 aiT

i. The
shares are then obtained by evaluating p at the publicly known places ω1, . . . , ωn ∈ R×,
i. e., the share of player Pi is set as p(ωi), for i = 1, . . . , n.

Reconstruction works by the Lagrange interpolation theorem, as t points on p suffice to
reconstruct it uniquely, and then evaluate p(0) = m. For this, assume that si := p(ωi),
and that we have entries si1 , . . . , sit . We compute the Lagrange polynomial form
q ∈ R[T] of p as

q =
t∑

j=1
sij

∏
j 6=k

ωik − T
ωik − ωij

,

using only the given places and the publicly known ωi. As it agrees with p at ωi1 , . . . , ωit ,
and is of degree t− 1, it is identical to p. Moreover, by assumption, the expression in
the denominator is not equal to zero. So, evaluating q(0) = m we obtain the secret
message.
Moreover, q is linear in the shares and the privacy condition follows as for t − 1

points, we can artificially add another one with coordinates (0,m′), to obtain a uniquely
determined polynomial q̃ with q̃(0) = m′. To obtain a valid share for this, we then have
to evaluate q̃(ωit), for an index it whose entry was not previously known.

1.2.1 Multiplicative Secret Sharing
This section is about LSSS that exhibit multiplicativity and we therefore assume
additionally that the message spaceM is an Λ-algebra, i. e., additionally to being an
Λ-module, it has a Λ-bilinear multiplication operation. Furthermore, the share spaces
S1, . . . ,Sn are R-algebras with R-bilinear multiplications ~i.
Definition 1.3. Let Σ = (Sh,Rec) be an n-player LSSS over Λ with message spaceM,
share spaces Si as described above, and access structure Γ = (A,B). Σ is said to be
multiplicative, if for all j ∈ {0, . . . , n}, m, m′ ∈ M with s ← Sh(m), s′ ← Sh(m′), it
holds:

m ·m′ = Rec
(
s ∗ s′, j), where s ∗ s′ :=

∑
i

Sh′i
(
si ~i s

′
i

)
,

6

1.2 Linear and Multiplicative Secret Sharing Schemes

where Sh′i : Si → S is a share map working directly on the share space of player Pi. (We
can set Sh′i := Sh ◦ϕi, where ϕi : Si →M is a lift of the ring homomorphism ϕ : R→ Λ
to the corresponding modules; assume that Si andM are free over R and Λ for this
purpose.) Moreover, Σ is said to be strongly multiplicative if the condition holds, even
if s ∗ s′ is restricted to a qualified player set A ∈ A (containing player Pj , if j 6= 0),
i. e., the usual reconstruction property of the secret sharing scheme holds also for these
products.

The significance of this definition is as follows: We aim to define a protocol that allows
us to obtain a situation, given that two messages are already shared, that each player
holds a share of the product of the two messages, without intermediate reconstruction.
For this note that si ~i s′i can be calculated by a local computation, i. e., player Pi can
compute it using only his own shares of the two messages. After this, each player Pi,
i = 1, . . . , n can share their locally computed products, leading to new share vectors
t1, . . . , tn. This step is called the resharing step. By the linearity of the scheme, we
can add these locally again, to obtain a share of the sum, which is, by definition of the
multiplicativity of the scheme, a share of the product.
Let us remark a few things on the special share map Sh′i. In the case usually found

in the literature we have, as mentioned before, Λ = R and ϕ = idR. In the case of
M = R = S1 = . . . = Sn, we further note that ϕi = ϕ = idR, so that Sh′i = Sh. In
this case the locally computed product of the shares lies directly again in the message
space, so there are no hurdles for the resharing step. In our more general situation
this is not the case, so the natural solution is to map it to the message space using
the ring homomorphism ϕ associated to our scheme. However, in our computational
secret sharing scheme, to be constructed in Chapter 2, ϕ is a decryption function, which
can only be executed with knowledge of the secret key, which we do not have in this
situation. This issue will be solved in the corresponding section by using a different but
compatible share map which works in R, see Section 2.1.1.

Note that strongly multiplicative schemes have the following restrictions on the access
structure of a scheme. Let Γ be an access structure on player set P . For this, we define
the element-wise union of set systems as: A1 t A2 := {A1 ∪ A2 : A1 ∈ A1, A2 ∈ A2}.
We state the generalized version of the Q3 property as in [FM02]: Γ is said to be Q3, if
P /∈ A t B t B. This is necessary for strong multiplication and we assume it tacitly for
the rest of the thesis, whenever we have the strong multiplication property.

Example 1.2. The LSSS of Example 1.1 is multiplicative, if and only if t < n/2, and
strongly multiplicative, if and only if t < n/3, cf. [C+03, Proposition 1].

Remark 1.3 (d-fold products). We can generalize the definition of strong multiplica-
tivity to d-fold products, in a straightforward manner. For this let j ∈ {0, . . . , n},
m1, . . . ,md ∈M with si ← Sh(mi), i = 1 . . . , d be arbitrary. Then it has to hold

m1 · · ·md = Rec(s1 ∗ · · · ∗ sd, j), where s1 ∗ · · · ∗ sd :=
∑
i

Sh′i(s1i ~i · · ·~i sdi),

even when s1 ∗ · · · ∗ sd is restricted to a set of A (containing player Pj , if j 6= 0). While
we can already compute any circuits with strong multiplicativity alone, this stronger

7

1 Preliminaries

property avoids resharings steps in between, so that we can compute d-fold products
with only one resharing step afterwards.

1.2.2 Games for Homomorphic Secret Sharing Schemes
For linear secret sharing scheme without a linear Sh function, we have the problem
that privacy and reconstruction guarantees do not need to hold in general for sums
and products of shares. In order to get a fine-grained control on the guarantees after
arithmetic operations, we introduce classes of circuits C and the corresponding modified
games for privacy and reconstruction adversaries, parametrized by a circuit class as
C-priv and C-rec. Moreover, we describe a general method to compatibly lift a circuit
from a Λ-algebraM to the share space of the secret sharing scheme. At the end of the
section we state a certain property of the scheme, which allows reduce the C-privacy and
C-reconstruction guarantees to the “ordinary” privacy and reconstruction guarantees.

Definition 1.4 (Algebraic Circuits). Let t ∈ N≥1. We define a t-ary algebraic circuit
over a ring Λ as an directed acyclic graph with the following properties: a) there are t
nodes with in-degree zero, called input nodes, b) there is one node with out-degree zero,
called output node, c) any other node is called a gate and is labeled by one of the ring
operations. We might restrict ourself to the case where each gate has in-degree two.
The size of the circuit is the number of its gates, and its depth is the length of the

longest path from any input node to the output node. A circuit C as described naturally
gives rise to a map C(·) : Λt → Λ. Analogously, we can define circuits with l output
nodes and circuits for modules or algebras over a ring, where each input node is labeled,
stating whether it accepts inputs from the ring of scalars or from the module or algebra.

We propose the following naming conventions for classes of circuits on an algebra over
a ring. Denote by Ct→l the class of all t-ary circuits with addition, scalar multiplication
and multiplication gates and l output nodes. Moreover, denote the Clin the class of
linear circuits, i. e., without multiplication gates. Moreover, C≤L denotes the class of
all circuits of size polynomial in the number of input nodes, and maximal depth L.
Furthermore, we set Clin

t→l := Ct→l ∩ Clin and C≤Lt→l := Ct→l ∩ C≤L.

To lift a circuit specified on our message spaceM, which is an algebra over the ring Λ,
to the share space S, the addition and scalar multiplication gates are directly mapped
to addition and scalar multiplication operation gates on the share space. However, for
multiplication to work, we need a resharing step, as described in the previous section on
multiplicative secret sharing. For this we map a multiplication gate to a combination
of n gates using the local multiplication ~i on Si, to which we append a structure of
addition and scalar multiplication gates representing the share function in the resharing
process. Afterwards, we have an multi fan-in addition gate (or its representation as
multiple gates with fan-in 2), which take as input all the outputs of the share structures.
Note that the share “block” needs randomness as additional input to work correctly.
If Σ is compatible with d-fold products, then we need only one resharing step after

any d multiplications. We can simply assume that Lift(C) chooses the maximal possible
d for this, to avoid unnecessary resharing steps, for usual reconstruction guarantees. If

8

1.2 Linear and Multiplicative Secret Sharing Schemes

we would like to have a more robust reconstruction, we can decrease the number of
multiplications before a resharing step, accordingly.

We denote the map we described in the previous paragraph by Lift(C, r), which lifts
a circuit C defined onM to S, and takes additional input r ∈ R for the resharing steps.
We write Lift(C) for short, if we want to leave the randomness implicit, as usual.

Definition 1.5. We call an adversary A a C-arithmetic B-privacy adversary, if it is
defined as in Experiment 1.3 and tries to distinguish the sharing of two evaluations of a
self-chosen t-ary circuit C ∈ C on the share vectors of equal-length, self-chosen secrets by
only looking at the shares of a set of players that it is allowed to corrupt, i. e., of a set in
B. Its advantage in the game of Experiment 1.3, relative to the security parameter κ, is
denoted as AdvC-priv

Σ,A (κ). Moreover, we define a C-arithmetic A-reconstruction adversary
A to be an adversary as in Experiment 1.4, trying to prohibit the correct reconstruction
of the evaluation of a self-chosen t-ary circuit C ∈ C on self-chosen secrets, by removing
shares or injecting new share values for players it may corrupt. Here again, A must
leave at least one set in A uncorrupted and if A outputs a player index j 6= 0, the share
of player Pj is unchanged. We define the advantage of A in the game of Experiment 1.2
relative to the security parameter κ as AdvC-rec

Σ,A (κ). C-arithmetic A-reconstruction
erasure adversaries are defined analogously as in Section 1.1.

Remark 1.4 (concerning evaluation keys). Note that, as it is the case in our secret
sharing scheme of Chapter 2, the evaluation of a circuit on the share space may require
so-called evaluation keys. If this is the case, we modify the secret sharing scheme, so
that it saves the evaluation keys corresponding to the shares, and exhibits an additional
map EvalKey that outputs the evaluation key corresponding to a share vector. For
arbitrary share vectors to work, it might require a reference to the original share vectors
as output by the scheme and a description of the calculation used to obtain it, in form
of a circuit.

We can describe the statement that the whole player set P can reconstruct the secret
messages after evaluation of circuits C ∈ C, as the property of the following diagram to
be commutative:

Mt St

Ml S l

×t

i=1 Sh

C Lift(C)

×l

i=1 Rec

Definition 1.6. Let Σ be a linear secret sharing scheme over Λ with message spaceM,
and C a non-empty class of circuits onM. Σ is said to be C-arithmetic, if the following
holds:

1. If there is a circuit in C containing a multiplication gate, then there is an R-algebra
structure on the share spaces,

9

1 Preliminaries

(m1
0, . . . ,m

t
0,m

1
1, . . . ,m

t
1, C, state)← A1(1κ)

b ← {0, 1}
si ← Sh

(
mi
b

)
, for i = 1, . . . , t

eki = EvalKey(si), for i = 1, . . . , t
s ← Lift(C)((s1, ek1), . . . , (st, ekt))
b∗ ← Acorrupt(s,·)

2 (1κ, ek1, . . . , ekt, state)
if b = b∗ then

return 1
else

return 0
Experiment 1.3. The C-priv experiment of secret sharing scheme Σ with adversary
A = (A1, A2) challenged to compromise the privacy of Σ by distinguishing the sharing
of two evaluations of a self-chosen t-ary circuit C ∈ C on the share vectors of equal-
length (i. e., |mi

0| = |mi
1|, i = 1, . . . , t), self-chosen secrets, corrupting only players of a

set in B. Here, C is a distinguished class of circuits onM and eki are evaluation keys,
generated by Σ, as they are needed in order to evaluate C, cf. Remark 1.4.

2. For any C-arithmetic B-privacy adversary A of Σ, there is a B-privacy adversary
B of Σ, such that B is PPT if A is, and

AdvC-priv
Σ,A (κ) ≤ Advpriv

Σ,B(κ).

3. For any C-arithmetic B-reconstruction erasure adversary A of Σ, there is a B-re-
construction erasure adversary B of Σ, such that B is PPT if A is, and

AdvC-rec
Σ,A (κ) ≤ Advrec

Σ,B(κ).

If Σ is robust and item 3 holds analogously for substituting adversaries, then Σ is said
to have robust C-arithmetic reconstruction.

In our search for criteria which allow us to show C-arithmeticity of a secret sharing
scheme, we define the following property.

Definition 1.7 (circuit privacy). Let C be a circuit class overM and Σ = (Sh,Rec)
an n-player LSSS over Λ with message space M and access structure Γ = (A,B),
with an R-algebra structure on the share spaces, if there is a circuit in C containing
a multiplication gate. Let Expwc-priv

Σ,A (κ) be the game which an adversary A wins, if it
is successful in distinguishing the evaluation of two self-chosen t-ary circuits of C with
the same number of output nodes on self-chosen messages m1, . . . ,mt ∈M when given
access to the shares of players of a set in A and optionally the corresponding evaluation
keys.
In other words, it distinguishes the distributions {Lift(C1)((m1, ek1), . . . , (mt, ekt))}

and {Lift(C2)((m1, ek1), . . . , (mt, ekt))} restricted to a set in A that A may adaptively
determine, by corrupting players as needed. Denote the advantage of A in the game by

10

1.2 Linear and Multiplicative Secret Sharing Schemes

(m1, . . . ,mt, C, state)← A1(1κ)
si ← Sh(mi), for i = 1, . . . , t
eki = EvalKey(si), for i = 1, . . . , t
s ← Lift(C)((s1, ek1), . . . , (sl, ekt))
(s′, j)← Acorrupt(s,·)

2 (1κ,m1, . . . ,mt, C, ek1, . . . , ekt, state)
if Rec

(
sT t s′T , j

) 6= C(m1, . . . ,mt) then
return 1

else
return 0

Experiment 1.4. The C-rec experiment of secret sharing scheme Σ with adversary
A = (A1, A2) aiming at preventing the correct reconstruction of the evaluation of a
self-chosen t-ary circuit C ∈ C on self-chosen secrets, leaving at least a set of players in
A uncorrupted. Note that T is the set of corrupted players, and j is an uncorrupted
player the adversary may point out explicitly, depending on the security notion. Here,
C is a distinguished class of circuits onM and eki are evaluation keys, generated by
Σ, as they are needed in order to evaluate C, cf. Remark 1.4.

Advwc-priv
Σ,A (κ). Then Σ is said to have weak perfect circuit privacy, if Advwc-priv

Σ,A (κ) = 0
for any such adversary A and weak statistical circuit privacy, if Advwc-priv

Σ,A (κ) = negl(κ).
Moreover, the computational circuit privacy guarantee restricts the adversary class
additionally to PPT.
Analogously, we define Expsc-priv

Σ,A (κ) to be the game as before, but instead of distin-
guishing the evaluations of two different circuits, A has to distinguish the evaluation of
a self-chosen circuit C on the share space, from an evaluation of C on the message space,
with the sharing applied afterwards, i. e., it needs to distinguish {Sh(C(m1, . . . ,mt))}
and {Lift(C)((m1, ek1), . . . , (mt, ekt))}. We call this the strong circuit privacy game
and define the corresponding strong circuit privacy notions, as expected.

Lemma 1.1. Let C be a circuit class for M and Σ = (Sh,Rec) an n-player LSSS over
Λ with message space M, with an R-algebra structure on the share space S, if there
is a circuit in C containing a multiplication gate. If Σ has the strong circuit privacy
property for C as described above, then it holds that for any C-arithmetic B-privacy
adversary A of Σ, there is a B-privacy adversary B of Σ, such that B is PPT if A is,
and AdvC-priv

Σ,A (κ) ≤ Advpriv
Σ,B(κ).

Proof. This is a straightforward reduction. For this, let B make use of a simulation of
adversary A as follows: When A outputs m1

0, . . . ,m
t
0, m1

1, . . . ,m
t
1 and a t-ary circuit

C ∈ C, it simply calculates m0 := C(m1
0, . . . ,m

t
0) and m1 := C(m1

1, . . . ,m
t
1) and sends

these out as part of the priv game. Whenever A makes use of its corruption oracle, B
queries its own for the same player, and forwards the share entry to A. The final output
of A is then returned by B to the surrounding game. Due to strong circuit privacy A
cannot tell whether it obtains shares for which the sharing procedure was applied after
the evaluation of C or whether it was later performed on the share spaces, as in the
usual C-privacy game, and so cannot make use of the fact.

11

1 Preliminaries

It would be interesting to extend the previous lemma to weak circuit privacy. We
leave this as an open problem for now and turn to a corollary for schemes with a linear
share map.

Corollary 1.1. Let Σ = (Sh,Rec) be an n-player LSSS over Λ with message space M
with linear Sh map. Then Σ is Clin-arithmetic. If Σ is robust then it also has robust
Clin-arithmetic reconstruction.

Proof. The Clin-privacy property is immediate by Lemma 1.1, as a linear share map
leads to strong circuit privacy for Clin. Moreover the Clin-reconstruction guarantee
follows directly from the definition of an LSSS.

Lemma 1.2. Let Σ = (Sh,Rec) be a strongly multiplicative n-player LSSS over Λ
with message space M. Let C := Ct→l. Then it holds that for any C-arithmetic
B-reconstruction erasure adversary A of Σ, there is a B-reconstruction erasure adversary
B of Σ, such that B is PPT if A is, and AdvC-rec

Σ,A (κ) ≤ Advrec
Σ,B(κ).

Proof. This is immediate by induction as the invariant of reconstructability is preserved
after a multiplication with resharing by definition.

1.3 Universal Composability
Our aim is to use secret sharing schemes to realize general secure multiparty compu-
tation protocols, which do not leak private information and assure correctness of the
computation, regardless of the context it is used in. Of course, to be meaningful, we
have to take real-world adversarial powers in account, which is typically the corruption
of participants. When the adversary corrupts a player, he learns all of its previous in-
and output, and, if he is active, can control all future actions. A passive adversary is
restricted to learning the information and cannot alter the behavior of players.
Players and adversaries are modeled by Turing machines and therefore the security

has to be proven against all possible attacks. In the past, it was not so rare that
attempts to capture the adversarial behavior overlooked harmful actions or protocol
states induced by its role in a higher-level protocol.

However, in this section we introduce an approach to overcome these problems, namely
the universal composability (UC) framework, based on the ideal- vs real-world approach.
In our definitions and presentation of the protocols, we follow [C01; N03] as reviewed
in Cramer and Damgård [CD05]. For the basic setting we assume a synchronous
network between players P1, . . . , Pn and the adversarial environment Z. These are
modeled as interactive Turing machines (ITMs), which have additional tapes used for
communication, and are connected by pairwise secure channels (in the information
theoretic setting). Moreover, a secure broadcast channel for each player is assumed.
Note that the environment Z is defined as the adversary, having full control over

everything that is not directly part of the protocol as run by the players. The aim
is to design our real-world protocol in a way, that Z is unable to distinguish a run
of our protocol from an ideal-world setting, which is per definition free of unwanted

12

1.4 Linear Distributed Commitments

information leakage, etc. For example, the ideal world can contain an incorruptible
third party, to which players send their inputs, and which never leaks anything of it.
More precisely, after running either the protocol, or the ideal functionality, whose

interaction is presented to Z by a PPT simulator S to look like a run of the real-world
protocol, the environment outputs a bit, guessing which of the two worlds it is in.
If it is unable to distinguish the two, we can regard the real protocol as secure as
the incorruptible ideal-world functionality, leading to proof of security against any
adversarial action and independent of the context the real-world protocol is used in.
Therefore we can later use this ideal functionality as a blackbox in a higher-level protocol,
without compromising our security guarantees.

Definition 1.8. Let F be an ideal functionality, and π a real-world protocol. We say
that π securely realizes F , if, there is a PPT simulator S, such that for every adversarial
environment Z and every input z,

AdvUC
π,F,S,Z(κ, z) := Pr

[
Expreal

π,Z(κ, z) = 1
]
− Pr

[
Expideal

F,S,Z(κ, z) = 1
]
,

is negligible in κ, where Expreal
π,Z(κ, z) and Expideal

F,S,Z(κ, z) are just a run of the protocol,
with a guess of Z whether it is in the ideal or the real-world-scenario, afterwards. We
call the security computational, if Z is additionally assumed to be a PPT.

1.4 Linear Distributed Commitments
In this section we describe the ideal functionality FHC which stores homomorphic
commitments and releases them again on an opening request of the committing player,
in the synchronous setting. This functionality is essential for establishing verifiable
secret sharing and multiparty computation protocols secure against active attacks. Note
that our presentation of the relevant commands follows Cramer and Damgård [CD05].
A commitment protocol allows a player to fix a certain value a without revealing

it to anybody else (the so-called hiding property). Later, he can execute an opening
command, showing the previously fixed value to the other participants. For this, he is
bound to a and cannot influence the protocol to reveal any other value except a or a
fail signal (the binding property).
We denote a commitment of value a by player Pi as [a]i, which consists of a correct

(or rather consistent, that is recoverable) sharing of a. The commitment scheme is called
linear, if from u, [a]i and [b]i a commitment of [a + b]i and [u · a]i can be generated
without any interaction. It is called a distributed commitment scheme, as it works via
a secret sharing process, in contrast to cryptographic commitments which use certain
encryption schemes. Hence, it is necessary for the real-world protocol to have all honest
players participating. This fact is modeled by the requirement that a command is issued
by all honest players cooperatively in the ideal world.
Note that any implementation will guarantee security only when the protocol is

used as intended. So, for example, a disagreement of honest players will cause FHC to
broadcast all internal data and stop working. In this case it becomes trivial to simulate

13

1 Preliminaries

and we do not have to care about the unintended use in our proof of security for a given
real-world protocol. Note that we use the synchronous model for our setting.
We specify the commands commit, open, add, cmult below, together with three

additional commands for commitment transfer (CTP), commitment sharing (CSP) and
a check whether a third commitment contains the product of two others (CMP). The
round numbers in the command specifications below are all relative to the current
round of the command initiation. Moreover, the identifier variables idx are for unique
identification of the committed values in the database of the ideal functionality. To
ensure correct use of identifiers, we would suggest a consecutive numbering, which
clarifies for all involved parties which idx should be used.

Commit. Here, we describe the protocol interface of player Pi committing a value a.
Let dc ∈ N denote the commitment delay, which gives a corrupted player the possibility
to change his committed value after the initiation of the command.

1. In the round 1, every player Pj , i 6= j sends a message (commit, i, id), while Pi
sends (commit, i, id, a).

2. In round 2, . . . , dc − 1, a corrupt Pi may once send (commit, i, id, a′) to change
the commitment to value a′.

3. In round dc, the functionality sends (commit, i, success) to every player, unless
a or a′ = ⊥. In this case, (commit, i, fail) is send. Afterwards, either (i, id, a) or
(i, id, a′) is stored, depending on whether Pi made use of the possibility to override
the committed value.

Open. This is the opening protocol broadcasting a of the previously stored commitment
[a]i. Note that a private opening to only a player Pj is possible, when the opening
command is accommodated with an additional parameter j.

1. In round 1, all players send (open, i, id) to FHC, while Pi may send an additional
“refuse” or “accept”.

2. In round 2, FHC sends a message (open, id, a) containing the stored value a of the
commitment to every player, unless Pi sent “refuse”. In this case (open, id, fail) is
sent.

Addition. All honest players send (add, id1, id2, id3) in the same round. If (i, id1, a),
(i, id2, b) have been stored previously, then FHC stores (i, id3, a + b). This computes
[a+ b]i from [a]i and [b]i without interaction, as it can be typically done in a real-world
protocol by a local computation on the players side.

Constant Multiplication. All honest players send (cmult, id1, id2, u) in the same round.
If (i, id1, a), has been stored previously, then FHC stores (i, id2, u · a). This computes
[u · a]i from [a]i and a factor u without interaction.

14

1.4 Linear Distributed Commitments

Commitment Transfer. This command transfers a commitment from player Pi to Pj ,
i. e., creating a new commitment [a]j from a previously stored [a]i. Let dctp denote the
CTP delay which gives a corrupted commitment owner the possibility to send a refuse
signal, causing a fail of the commitment transfer.

1. In the round 1, all honest players send (ctp, i, id1, j, id2).

2. In round 2, . . . , dctp − 1, a corrupt Pi may send (id1, refuse).

3. In round dctp, FHC sends (id1, id2, fail) to every participant, if Pi opted to refuse
and (id1, id2, success) otherwise. In the later case, it stores (j, id2, a) and sends
the value a privately to Pj .

Commitment Sharing and VSS. The commitment sharing protocol performs a secret
sharing on a committed value a, i. e., creates shares v1, . . . , vn based on the valid secret
sharing parameters or randomness (e. g., polynomial coefficients chosen by Pi) and stores
commitments [v1]1, . . . , [vn]n. Let dcsp denote the CSP delay which gives a corrupted
Pi time to change the secret sharing parameters after the initiation of the command.

1. In round 1, all honest players send (csp, id0, . . . , idn) to FHC. If (i, id0, a) is the
corresponding stored commitment and Pi is honest, he also sends the parameters
needed to secret share a.

2. In round 2, . . . , dcsp − 1, a corrupt Pi may change the secret sharing parameters,
or send a message (id0, . . . , idn, refuse).

3. In round dcsp, either send (id0, . . . , idn, fail) (when a refuse signal was received)
or store (j, idj , vj), where vj is the share of player Pj , as shared by the received
parameters. In the same round, broadcast (id0, . . . , idn, success). In this process,
player Pj learns the committed share vj .

Note that verifiable secret sharing (VSS) is just the process of first committing to a
value, and then sharing it via the CSP protocol. This guarantees that the sharing is
correct, each player is committed to their share (hence, a robust sharing) and the shares
can be reconstructed, resulting in the value the dealer has committed herself to.

Commitment Product Test. The commitment multiplication protocol (CMP) allows
to test whether a commitment [c]i contains the product of two other specified com-
mitments [a]i and [b]i, i. e., whether c = a · b. This is needed to assure that corrupted
players cannot change the result of an interactive multiplication, without failing on this
check procedure afterwards. Here, dcmp denotes the delay allowing a corrupt owner of
the commitments to send a refuse signal.

1. In round 1, all honest players send (cmp, id1, id2, id3).

2. In round 2, . . . , dcmp − 1, a corrupt Pi may send (id1, id2, id3, refuse).

15

1 Preliminaries

3. In round dcmp, if (i, id1, a), (i, id2, b) and (i, id3, c) have been previously stored,
Pi did not send a refuse command before, and a · b = c, FHC sends a confirmation
message (id1, id2, id3, success) to everyone. Otherwise, (id1, id2, id3, fail) is send.

Remark 1.5 (Protocol Instances based on LSSS). Note that, as shown in [CD05; C+03],
generic protocols for CMP, CTP, and CSP exist, which are based on the addition,
constant multiplication, commit and open commands. See also [FM02]. However, they
make use of the property, that the Sh-function of the scheme is linear, in contrast to
our setting. We will discuss an adaption to our setting in Section 2.2.

1.5 Secure Multiparty Computation
In the following we describe the ideal functionality FMPC [CD05, p. 51] for secure
multiparty computation in the synchronous communication setting. Assume that
xi = ⊥, for i = 1, . . . , n. Let di denote the input delay (number of rounds the adversary
can change input values) and dc denote the computation delay (number of rounds the
computation takes place).

1. In round 1, collect input messages. If all honest players sent their input, set
xi = v for all Pi, and send an “Inputs received” message on the corrupt output
port. Otherwise, abort. (Note that, when aborting, all internal data is sent to the
corrupt output port.)

2. In rounds 2, . . . , di, corrupt players may send a change message, which resets xi to
a new value v′. On reception of any message from a honest player after round 1,
abort.

3. After di + dc rounds, set (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi.

This setting with an input delay di ≥ 1 allows the adversary to be rushing, i. e., it may
decide its input, after the honest players fixed their input and can afterwards use the
information of corrupted players, to decide on further corruptions and value changes
of already corrupted players, provided these still fulfill the conditions of the adversary
structure.

In accordance to Definition 1.8, we can then say, that a real-world protocol π securely
realizes FMPC , if there is a PPT simulator S, such that for every adversarial environment
Z and every input z,

AdvUC
π,FMPC,S,Z(κ, z) := Pr

[
Expreal

π,Z(κ, z) = 1
]
− Pr

[
Expideal

FMPC,S,Z(κ, z) = 1
]
,

is negligible in κ, where Expreal
π,Z(κ, z) and Expideal

FMPC,S,Z(κ, z) are just a run of the
protocol, with a guess of Z whether it is in the ideal or the real-world-scenario, afterwards.

A passively secure MPC-protocol based on LSSS. Using the notation we introduced
above, we can simply describe a passively secure MPC protocol π based on an n-player
linear secret sharing scheme Σ which is C-arithmetic for a circuit class C. For this, in

16

1.6 Homomorphic Encryption

the first round all players share their inputs and distribute their shares to the other
players. As no active corruptions occur, we can set di = 1. Let C ∈ C be the n-ary
circuit to be evaluated, which we want to execute on the share vectors of the inputs,
to preserve their privacy. For this, we proceeding exactly like the Lift(C) map, setting
the share vectors of the players as the values of the input nodes of the lifted circuit.
Any addition and constant multiplication gates can be computed locally, and for the
multiplication gates we have to do the resharing steps as prescribed in Lift(C). In the
end, the final share vector is reconstructed and yields the result.

Theorem 1.1. The protocol π realizes FMPC in the information-theoretic scenario with
computational security against an adaptive and passive environment corrupting at most
a set in B, and with di = 1, dc equal to the depth of the circuit used to implement the
function computed.

Proof. See [CD05, Theorem 2].

1.6 Homomorphic Encryption
Homomorphic encryption schemes allow to perform operations on ciphertexts. Upon
decryption, we retain a message which is the result of the corresponding operations in
plaintext space. Moreover, the ciphertexts do not grow too much in this process.
While such a scheme exhibits a plethora of applications, including for example,

cloud computing with privacy guarantees, and was therefore much looked for, the first
such scheme (based on an approximation problem over lattices) was devised in 2009
in the groundbreaking work of Gentry [G09]. Until then, researchers came up with
a second generation of schemes with a significant improvement on performance and
practicality, see e. g., [BV11a; BV11b; FV12; BGV12]. Moreover, López-Alt, Tromer, and
Vaikuntanathan [LTV12] introduced the notion of a multikey homomorphic encryption
scheme, allowing operations on ciphertexts encrypted under different keys. Before
we describe a variant of their scheme in Section 1.6.1, we discuss general notions of
homomorphic encryption schemes in the following.

Signature of Multikey Homomorphic Encryption. Let N ∈ N≥1 and C be a class of
circuits on a ring Λ. An N -key C-homomorphic encryption scheme HE := HE(N) =
(Keygen,Enc,Dec,Eval) with message space Λ and ciphertext space R has the following
signature:

• HE.Keygen(1κ): Generates the public parameters depending on the security pa-
rameter κ and from them, it creates a key pair consisting of the public key pk,
and the secret key sk, accompanied with an evaluation key ek, which is needed to
evaluate homomorphic operations on ciphertexts. It outputs (pk, sk, ek).

• HE.Enc(pk,m): Encrypts the message m ∈ Λ under public key pk.

• HE.Dec(sk1, . . . , skk, c): Decrypts a ciphertext c ∈ R using a set of secret keys.
If c is the result of an evaluation on ciphertexts encrypted under public keys

17

1 Preliminaries

corresponding to sk1, . . . , skk, all these secret keys are needed to retain the
plaintext.

• HE.Eval(C, (c1, ek1), . . . , (ck, ekk)): Evaluates a k-ary circuit C ∈ C on ciphertexts
c1, . . . , ck. For this, the corresponding evaluation keys are needed and a ciphertext
c∗ ∈ R is returned. (In contrast to [LTV12], we do not require that the pki are
passed to Eval. This is done to support secret-key variants more easily.)

Correctness. Let HE := HE(N) be as above. For the scheme to be correct, it has to
hold for all C ∈ C, all k-length subsequences {(pki, ski, eki)}i∈{1,...,k} of all sequences
of tuples {(pk′i, sk′i, ek′i)}i∈{1,...,N} of length N in the support of HE.Keygen(1κ), all
plaintexts m1, . . . ,mk ∈ Λ and all ciphertexts c1, . . . , ck ∈ R, such that ci is in the
support of HE.Enc(pki,mi), it holds that if

c∗ = HE.Eval(C, (c1, ek1), . . . , (ck, ekk)),

then
HE.Dec

(
sk′1, . . . , sk

′
N , c

∗) = C(m1, . . . ,mt).

In other words, after evaluating a circuit C ∈ C on ciphertexts, the decryption of
the resulting c∗ should be possible, when given the corresponding secret keys, and
should yield the result of C applied directly to the plaintexts. This holds, even if given
additional keys not used in the encryption.

By a hybrid argument, correctness can be shown to also hold for circuits with l output
nodes. Written in a different way, this implies that the following diagram commutes for
any circuit C : Λk → Λl ∈ C, k, l ∈ N≥1:

Λk Rk

Λl Rl

×k

i=1 HE.Enc(pki, ·)

C HE.Eval(C, (·, ek1), . . . , (·, ekk))

HE.Dec(sk1, . . . , skk, ·)l

Remark 1.6. If C is the class of all circuits on Λ, Cadd and Cmult are the addition
and multiplication circuits, respectively, sk1, sk2 and ek1, ek2 are secret and evaluation
keys associated to the ciphertexts, then HE.Dec(sk1, sk2, ·) : R → Λ is a ring homo-
morphism compatible with the structures (R,⊕,�) and (Λ,+, ·), where ⊕ is given
by HE.Eval(Cadd, (·, ek1), (·, ek2)) and � by HE.Eval(Cmult, (·, ek1), (·, ek2))). Here Cadd
and Cmult denotes the circuit with a single addition and multiplication gate, respectively.
Note that this does not (generally) hold for other structures on R.

Compactness. Let HE, C, {(pki, ski, eki)}i∈{1,...,k}, m1, . . . ,mk ∈ Λ, and c1, . . . , ck
be as in the preceding paragraph. For the scheme to be compact, it has to hold
that if c∗ = HE.Eval(C, (c1, ek1), . . . , (ck, ekk)), there is a polynomial p, such that

18

1.6 Homomorphic Encryption

|c∗| ≤ p(κ,N). This implies that the length of the resulting ciphertext does not depend
on k or C and avoids trivial solutions where just (C, c1, . . . , ck) is returned on evaluation.
Note that it is open, whether it is possible to avoid the dependence of p on N .

Compactness is a crucial property for fully homomorphic encryption and together with
correctness, it leads to the following definition.

Definition 1.9 ([LTV12]). A family {HE(N) = (Keygen,Enc,Dec,Eval)}N of encryption
schemes as above, with N ∈ N≥1, is multikey C-homomorphic, if it is both correct and
compact for all N ∈ N≥1 and C ∈ C. Any HE(N) is called a N -key C-homomorphic
encryption scheme. We speak of a fully homomorphic scheme or family, if C is the class
of all circuits.

Security. We state the common notion of passive security of homomorphic encryption
schemes, when given an additional evaluation key ek which is necessary for evaluation
of circuits. Note that we cannot hope for the stronger IND-CCA2 (chosen-ciphertext
attack) security, due to the general incompatibility of non-malleability and homomorphic
encryption.

Definition 1.10 (IND-CPA security). Let HE = (Keygen,Enc,Dec,Eval) be an N -key
C-homomorphic encryption scheme. Let A = (A1, A2) be a PPT adversary. We define
the advantage of A to distinguish the ciphertexts of two selected equal-length plaintexts
as

AdvIND-CPA
HE,A (κ) := 2 · Pr

[
ExpIND-CPA

HE,A (κ)
]
− 1,

where ExpIND-CPA
HE,A (κ) is defined in Experiment 1.5. A is valid, if |m0| = |m1|. HE is

called IND-CPA secure (for “indistinguishable under chosen-plaintext attacks”) with
access to the evaluation key, if for every valid A the advantage AdvIND-CPA

HE,A (κ) is
negligible in κ.

(pk, sk, ek)← HE.Keygen(1κ)
(m0,m1, state)← A1(1κ, pk, ek)
b ← {0, 1}
c∗ ← HE.Enc(pk,mb)
b∗ ← A2(1κ, c∗, state)
if b = b∗ then

return 1
return 0
Experiment 1.5. The public-key IND-CPA experiment of encryption scheme HE with
adversary A = (A1, A2). A chooses two equal-length messages and guesses afterwards
which of the two is the plaintext of the given challenge cipertext c∗. Note that A gets
the public and evaluation key beforehand.

19

1 Preliminaries

Definition 1.11 (Circuit Privacy). Let HE be an N -key C-homomorphic encryption
scheme. HE is said to have perfect (statistical) circuit privacy for a class of circuits Cp ⊆ C,
if for all C1, C2 ∈ Cp, all tuples {(pki, ski, eki)}i∈{1,...,k}, with k ≤ N in the support of
HE.Keygen(1κ), all plaintexts m1, . . . ,mk ∈ Λ and all ciphertexts c1, . . . , ck ∈ R, such
that ci is in the support of HE.Enc(pki,mi), if C1(m1, . . . ,mk) = C2(m1, . . . ,mk) then
the following distributions are perfectly (statistically) indistinguishable:

{HE.Eval(C1, (c1, ek1), . . . , (ck, ekk))} and {HE.Eval(C2, (c1, ek1), . . . , (ck, ekk))}.

Moreover, it is said to have computational circuit privacy for Cp if the distributions are
computationally indistinguishable, even when given the secret keys (ski)i.

1.6.1 A Multikey FHE-scheme based on NTRU

We describe a scale-invariant version on the multikey homomorphic encryption scheme of
López-Alt, Tromer, and Vaikuntanathan [LTV12], by deducing the feasibility of multikey
computations for the LHE′ scheme of [B+13]. So note, that this presentation follows
mostly the paper of Bos et al. [B+13], with the exception of deducing the multikey noise
bounds, similar to those of [LTV12].

The scheme is based on a variant of NTRU due to Stehlé and Steinfeld [SS11] and is
relative to the hardness of the Ring Learning with Errors (RLWE) problem as described
in Lyubashevsky, Peikert, and Regev [LPR10] and a the non-standard DSPR (Decisional
Small Polynomial Ratio) assumption, due to [LTV12]. It features scale-invariance and
therefore avoids modulo switching, which makes it much easier to handle. This property
is due to Brakerski [B12], and was adapted to the NTRU scheme in [B+13], albeit
without taking care of the multikey property of the original scheme.

Encryption schemes based on NTRU use the ring R := Z[X]/Φd(X), for a d ∈ N≥1,
as in Stehlé and Steinfeld [SS11]. Here, Φd(X) denotes d-th cyclotomic polynomial and
is of degree n = ϕ(d) (Euler’s totient function). The crucial property of Φd is that it is
monic, i. e., the coefficient of the largest degree is 1, and it is irreducible, i. e., it cannot
be written as a product of two polynomials of positive degree. The scheme has message
space Λ = R/tR and ciphertext space R, where ciphertext are represented modulo q as
described below. The possibility of a plaintext modulus t < q of size larger than 2 as in
[LTV12] is a generalization due to [B+13].

Notation. We define for a ∈ R the maximum norm ‖a‖ as the maximum over the
polynomial coefficients, which is well defined. Moreover, we have the following expansion
constant associated to R:

δ := sup
a,b∈R

(‖ab‖
‖a‖‖b‖

)
,

which is used for our analysis. See [LM06] for bounds on that measure.
Recall that, for a probability distribution χ on R, we write a← χ to indicate that a

is the result of sampling from χ. The distribution is said to be B-bounded, B > 0, if
any a← χ have ‖a‖ ∈ (−B,B), cf. [BGV12].

20

1.6 Homomorphic Encryption

The encryption works on a representation [a]q of integers in a ∈ Z/qZ as elements in
(− q

2 ,
q
2]. The corresponding map [·]q : Z→ (− q

2 ,
q
2] ∩ Z extends to elements of R via an

application to the polynomial coefficients, and furthermore to vectors of elements in
R. The more common modulo arithmetic Z→ [0, q) ∩ Z is denoted as rq(·), to avoid
confusion. Moreover, we define ∆ := bq/tc and note that ∆t = q − rt(q).

The scheme uses key switching [BGV12], a generalized version of relinearization from
[BV11a], to remove multiplicities of secret keys upon decryption. Without this method,
the size of the ciphertext after evaluation, and the product of secret keys for decryption
would depend on the circuit. For instance, already in non-multikey schemes, the square
of the secret key f2 would be needed to decrypt a product after multiplication, if no
key switching would be performed to transform the ciphertext back to a cyphertext
encrypted under f . For key switching to work, we introduce two functions from
[B12], which we denote by Dq,w and Pq,w, for a fixed w ∈ N≥2. For these, let [a]q be
the modulo q representation of a ∈ R as defined above. We can represent a as a sum∑`w,q−1
j=0 [aj]wwj , with `w,q = blogw qc+2. Then the decomposition map Dq,w : R→ R`w,q

maps a 7→ (
[
aj
]
w

)`w,q−1
j=0 , whereas for the power-of-w map Pq,w : R→ R`w,q , we have

a 7→ (
[
awj

]
q
)`w,q−1
j=0 . The salient feature of these maps is that for a, b ∈ R, we have

〈Dq,w(a), Pq,w(b)〉 = a · b (mod q).

The scheme HE := HE(N) = (Keygen,Enc,Dec,Eval) works as follows:

• HE.Keygen(1κ): Choose parameters d, q, t, χkey, χerr, w according to κ, where χkey
and χerr are Bkey-bounded and Berr-bounded distributions, respectively. Sample
polynomials f ′, g ← χkey and let f =

[
tf ′ + 1

]
q
. We ensure that f is invertible

modulo q, by resampling f ′, if this is not the case. Note that we assume that this
does not change the distribution much. Set h =

[
tgf−1]

q
. Compute

γ = [Pq,w(f) + e+ hs]q, with e, s← χ`w,q
err .

Output (pk, sk, ek) = (h, f,γ).

• HE.Enc(pk,m): To encrypt a messagem+tR, represented by [m]t, sample (e, s)←
χerr and output c = [∆[m]t + e+ hs]q.

• HE.Dec(f1, . . . , fl, c): Let l ≤ N . Compute m =
[
bt/q · [f1 · · · flc]qe

]
t
.

• HE.Eval(C, (c1, ek1), . . . , (ck, ekk)): To evaluate circuit C on c1, . . . , ck, we first set
Ki = {eki} and go through the Add and Mult gates of C. During the evaluation,
we keep track of the key sets, by passing the resulting key set to the input of the
next gate, calling the helper functions defined below.

We use the following helper functions:

• HE.Add(K1,K2, c1, c2): Compute c = [c1 + c2]q and output (c,K1 ∪K2).

21

1 Preliminaries

• HE.KeySwitch(c,k): Output [〈Dq,w(c),k〉]q.

• HE.Mult(K1,K2, c1, c2): Compute c(0) = [bt/q · c1c2e]q, and iteratively calculate
c(i) = HE.KeySwitch

(
c(i−1),γ

)
, for any γ ∈ K1∩K2. Output (c(|K1∩K2|),K1∪K2).

The following lemma shows a condition on the noise of the scheme which would still
allow for the correct decryption, together with an argument showing the correctness for
freshly encrypted ciphertexts. Here, Bkey and Berr are bounds on the distribution of
the key and error term, as in the definition of Keygen.

Lemma 1.3 ([B+13, Lemma 1 and 2]). Let c, f, m ∈ R. If there exists a v ∈ R, such
that

fc = ∆[m]t + v (mod q) and ‖v‖ < (∆− rt(q))/2,

then HE.Dec(f, c) = [m]t. If (h, f,γ) ← HE.Keygen(1κ) and c ← HE.Enc(h,m), then
there is a v ∈ R, such that

fc = ∆[m]t + v (mod q) and ‖v‖ < δtBkey

(
2Berr + 1

2rt(q)
)
.

This implies correct decryption for ∆ > δtBkey(4Berr + rt(q)) + rt(q).

In the following we will analyze the noise growth of the three helper functions used
during circuit evaluation, to ensure correct decryption afterwards. Following [B+13], we
call [v]q, for v ∈ R as in the previous lemma, the inherent noise term of c.

Addition. Assume that f(i)ci = ∆[mi]t + vi (mod q), for i = 1, 2, where f(i) is a
product f1 · · · fk · fi,1 · · · fi,li of k + li secret keys fj . Let the indices 1, . . . , k be of keys,
contained in both f(1) and f(2). We define f = f1 · · · fk, f̃i = fi,1 · · · fi,li and f̃ = ff̃1f̃2,
where the latter is the product of the f(1) and f(2) without duplicates. We have

f̃ [c1 + c2]q = f̃ c1 + f̃ c2

= f̃2(∆[m1]t + v1) + f̃1(∆[m2]t + v2)

= ∆
l2∏

m=1

(
1 + tf ′2,m

)
[m1]t + ∆

l1∏
m=1

(
1 + tf ′1,m

)
[m2]t + f̃2v1 + f̃1v2

= ∆([m1]t + [m2]t) + p2 ·∆[m1]t + p1 ·∆[m2]t + f̃2v1 + f̃1v2 (mod q),

with p1, p2 ∈ R such that ‖pi‖ = ‖f̃i− 1‖ < ‖f̃i‖ < δli−1(tBkey)li . Using [m1]t + [m2]t =
[m1 +m2]t + tradd with ‖radd‖ ≤ 1, this leads to:

f̃ [c1 + c2]q = ∆[m1 +m2]t + v (mod q), where
v = p2 ·∆[m1]t + p1 ·∆[m2]t + f̃2v1 + f̃1v2 + ∆tradd

22

1.6 Homomorphic Encryption

and

‖v‖ < ∆(‖p2[m1]t‖+ ‖p1[m2]t‖) + ‖f̃2v1‖+ ‖f̃1v2‖+ rt(q)

< δ
rt(q)

2 (‖p2‖+ ‖p1‖) + (δtBkey)l2‖v1‖+ (δtBkey)l1‖v2‖+ rt(q)

<
rt(q)

2
(
(δtBkey)l1 + (δtBkey)l2

)
+ (δtBkey)l2‖v1‖+ (δtBkey)l1‖v2‖+ rt(q).

Key Switching. Let i ∈ N≥1. We write this a bit more general than needed for our
purposes as in our case i = 1 would suffice, but it is an interesting side note that the
noise bound is independent of i. Let (h, f,γ) ← HE.Keygen(1κ) and fK a product of
l ∈ N secret keys. Let f i+1fK c̃ = ∆[m]t + ṽ (mod q) and c = HE.KeySwitch(c̃,ki),
where

ki =
[
Pq,w(f i) + e+ hs

]
q
∈ R`w,q .

Note that γ = k1. We obtain c, such that

ffKc = ffK
[
〈Dq,w(c̃), Pq,w(f i) + e+ hs〉

]
q

= f i+1fK c̃+ ffK〈Dq,w(c̃), e〉+ fKtg〈Dq,w(c̃), s〉
= ∆[m]t + v (mod q),

where v = ṽ + ffK〈Dq,w(c̃), e〉+ fKtg〈Dq,w(c̃), s〉.
Therefore, using ‖〈Dq,w(c̃),a〉‖ = ‖∑`w,q−1

j=0 [c̃i]wai‖ ≤ δ`w,q w2 ·Berr for a ∈ {e, s}, we
obtain:

‖v‖ < ‖ṽ‖+ (‖f‖+ tBkey)‖fK‖δ · δ2`w,q
w

2 Berr

< ‖ṽ‖+ ‖fK‖δ · δ2`w,qwtBerrBkey,

where the factor ‖fK‖δ can be left out, if fK = 1, as in [B+13, Lemma 5]. Otherwise,
we can use ‖fK‖ ≤ δl−1(tBkey)l. We define rks = δ2`w,qwtBerrBkey.

Multiplication. For multiplication, assume that f(i)ci = ∆[mi]t + vi + qri, as above.
Then we have c(0) = [bt/q · c1c2e]q. Using the same calculation as in the proof for [B+13,
Theorem 6], we obtain:

f(1)f(2)c(0) = ∆[m1m2]t + v(0) (mod q), where
v(0) = [m1]tv2 + [m2]tv1 + t(v1r2 + v2r1)

− rt(q)([m1]tr2 + [m2]tr1 + rm) + rv + rr − ra, with

‖rm‖ <
1
2δt,

‖rv‖ ≤
1
2δmin

i
‖vi‖,

‖rr‖ <
1
2 + rt(q)δ

(
t

4 + 1
2 + 1

2 min
i
‖vi‖

)
, and

23

1 Preliminaries

‖[m1]tv2 + [m2]tv1‖ ≤ δ
t

2(‖v1‖+ ‖v2‖).

However, we get different bounds on parts of the equation depending on ‖f(1)‖ and
‖f(2)‖. As ra = f(1)f(2)

t
q c1c2−f(1)f(2)b tq c1c2e, we have ‖ra‖ ≤ δ2‖f(1)‖ ·‖f(2)‖ ·‖ tq c1c2−

b tq c1c2e‖ ≤ δ2

2 ‖f(1)‖ · ‖f(2)‖. Moreover ‖ri‖ < 1
2δ‖f(i)‖+ 1. Using these inequalities and

‖f(i)‖ < δk+li−1(tBkey)k+li , we obtain:

‖v(0)‖ <
δt

2
(
(δtBkey)k+l2 + 3

)
‖v1‖+ δt

2
(
(δtBkey)k+l1 + 3

)
‖v2‖

+ rt(q)δ
t

4
(
(δtBkey)k+l1 + (δtBkey)k+l2 + 6

)
+ 1

2δmin
i
‖vi‖

+ 1
2 + rt(q)δ

(
t

4 + 1
2 + 1

2 min
i
‖vi‖

)
+ 1

2(δtBkey)2k+l1+l2

= δt

2
(
(δtBkey)k+l2 + 3

)
‖v1‖+ δt

2
(
(δtBkey)k+l1 + 3

)
‖v2‖ (1.3)

+ δ

2 min
i
‖vi‖(rt(q) + 1) + rt(q)δ

t

4
(
(δtBkey)k+l1 + (δtBkey)k+l2

)
+ 1

2
(
1 + rt(q)δ4t+ (δtBkey)2k+l1+l2

)
.

For the key switching step, let m = |K1 ∪K2| = k + l1 + l2, f1, . . . , fk be the secret
keys corresponding to K1 ∩ K2 and f the product of all m secret keys. Iteratively
calculating c(i) = HE.KeySwitch

(
c(i−1),γ

)
for any γ ∈ K1 ∩K2, results in a c(k), with

fc(k) = ∆[m1m2]t + v(k) mod q, such that

‖v(k)‖ < ‖v(0)‖+ (
k+1∑
j=2
‖fj · · · fk‖) · ‖f‖ · δ2rks

< ‖v(0)‖+ (
k+1∑
j=2

δk−j(tBkey)k−j+1) · δm−1(tBkey)m · δ2rks

= ‖v(0)‖+ (
k−1∑
j=0

(δtBkey)j) · (δtBkey)m · rks

= ‖v(0)‖+ 1− (δtBkey)k
1− δtBkey

· (δtBkey)m · rks

< ‖v(0)‖+ (δtBkey)2k+l1+l2 · rks

Remark 1.7. Note that for k = 1 and l1 = l2 = 0, i. e., the single-key case, we get the
same bounds as in [B+13], with the exception, that we have an additional additive rt(q)
for addition, and have slightly different constants for the multiplication step, cf. [B+13,
Lemma 7]. (Using 7t+2

2 ≥ 4t, we have a 3 instead of a 2 in the first line of (1.3), and a 4
instead of a 3 in its last line.)

24

1.6 Homomorphic Encryption

Correctness. To guarantee the correctness of the scheme for at least L levels of
operations, we put ourselves in the worst case scenario, where we have only multiplication
gates with the maximum number N of keys involved. Moreover, we assume the inherent
noise terms of the values for both gate inputs are approximately the same.

Theorem 1.2. The scheme can correctly evaluate circuits of depth L, with inherent
noise terms ≤ V , arranged in a leveled binary tree, if

∆ > 2(CL1 V + LCL−1
1 C2) + rt(q),

where C1, C2 are given as follows

C1 = 2δt(δtBkey)N , C2 = 2(δtBkey)2N+1δ`w,qwBerr.

Proof. We first note that the noise terms for multiplication dominate the ones for
addition. We summarize the noise terms for multiplication as

vmult < C̃1V + C̃2, where

C̃1 = δ

2
(
t(δtBkey)k+l2 + t(δtBkey)k+l1 + 6t+ rt(q) + 1

)
,

< δt(δtBkey)N + 3δt+ 1
2δrt(q) + δ

2
< 2δt(δtBkey)N , for δ or Bkey ≥ 2,

C̃2 = rt(q)δ
t

4
(
(δtBkey)k+l1 + (δtBkey)k+l2

)
+ 1

2 + 2rt(q)δt

+ (δtBkey)2k+l1+l2
(1

2 + δ2`w,qwtBkeyBerr

)
< rt(q)δ

t

2(δtBkey)N + 1
2 + 2rt(q)δt+ (δtBkey)2N

(1
2 + δ2`w,qwtBkeyBerr

)
< 2(δtBkey)2Nδ2`w,qwtBkeyBerr, for δ,Berr or Bkey ≥ 2.

By an iteration over L levels, and Lemma 1.3, we obtain the bound as stated.

Security. For the security of the scheme, we need the following hardness assumption.

Definition 1.12 (RLWE and DSPR). Let κ ∈ N be the security parameter, and
d, q ∈ N be integers and χ a distribution over R/qR, all depending on κ.

1. The (Decision-)RLWEd,q,χ (Ring Learning with Errors) problem is to distinguish
the distributions of pairs {(a, u)} and {(a, a · s+ e)}, where a, u, s← R/qR are
drawn uniformly at random, s remains fixed for all samples, and e← χ. See also
[B+13, Definition 1], [LPR10].

2. Let t be invertible in R/qR, yi ∈ R/qR and zi = −yit−1 (mod q) for i = 1, 2.
The DSPRd,q,χ (Decisional Small Polynomial Ratio) problem is to distinguish {u}
from {a/b}, where u← R/qR is drawn uniformly at random and a← y1 + tχz1 ,
b← y2 + tχz1 . See also [B+13, Definition 2], [LTV12, Definition 3.4].

25

1 Preliminaries

Theorem 1.3 ([LTV12, Lemma 3.6], [B+13, Theorem 8]). For N ∈ N≥1, the parameters
d, q and the distributions χkey, χerr as above, HE(N) is IND-CPA secure under the
assumption that the RLWEd,q,χerr and the DSPRd,q,χkey problems are hard, and that the
IND-CPA security is preserved even when the evaluation keys are given to the adversary.

Fully Homomorphic Scheme. By showing that our scheme can evaluate its own
decryption circuit and an additional gate, we can use a multikey variant [LTV12,
Theorem 4.5] of Gentry’s bootstrapping method [G09] to obtain a fully homomorphic
scheme. For this, we have to assume a circular security property, namely that the
scheme remains secure, even when given an encryption of the bits of the secret keys.
For this section, we set t = 2.

Lemma 1.4 ([LTV12, Lemma 4.4], [B+13, Lemma 4]). The decryption circuit for HE(N)

can be implemented as a polynomial size circuit of depth O(logN(log log q+ log d)) over
F2.

Theorem 1.4 (Multikey fully homomorphic encryption). Under the assumption, that
{HE(N)}N≥1 remains IND-CPA secure even when the adversary is given the evaluation
keys and encryptions of the bits of all secret keys, and for ∆ as in Theorem 1.2, with
L = c · logN(log log q + log d), c ≥ 1, we can find a family of IND-CPA secure multikey
fully homomorphic encryption schemes.

Proof. This is a consequence of the ability to evaluate the decryption circuit due to the
choice of ∆ and [LTV12, Theorem 4.1], a multikey variant of Gentry’s bootstrapping
theorem. See also [LTV12, Theorem 4.5].

26

2 Computational Arithmetic Secret Sharing

In this chapter we devise a strongly multiplicative computational secret sharing scheme
in two variants. The first of these is an adaption of the schemes by [BC95] and [K94]
to a fully homomorphic encryption scheme. They combine space-efficient information
dispersal algorithms (i. e., SSS with B = ∅) with encryption and a perfectly secure SSS
to share its much smaller cryptographic keys. As a side note, we would like to mention
that CSS can also be based on so-called all-or-nothing transform as in [RP11].

In the first section we give a detailed construction of our scheme and a proof that it is
a secret sharing scheme, in a game-based provable-security framework. In Section 2.1.1
we discuss its arithmetic properties, and give a concrete instance of the scheme by
suggesting a version for each of its components. In Section 2.2 we point out how we can
base an actively secure multiparty computation protocol on our scheme. For notation,
let R〈X〉 denote the R-algebra generated on a set X.

2.1 Construction of an Arithmetic CSS Scheme
Let P = {P1, . . . , Pn} be the set of players and Γ = (A,B) an access structure on P , and
C a class of circuits. In the following we construct a C-arithmetic computational secret
sharing scheme CSS[HE, IDA,KSS] = (Sh,Rec) over an R-algebra Λ with message space
M = Λ, share spaces Si = S ida

i ×R〈Skss
i 〉 and access structure Γ, using the following

ingredients:

• a multikey C-homomorphic scheme HE = (Keygen,Enc,Dec,Eval) with message
space Λ, key space K, and ciphertexts over R,

• a linear information dispersal scheme IDA = (IDA.Sh, IDA.Rec) over R′ ∈ {R,Λ}
with message space R′, share spaces S ida

i and access structure Γ′ = (A,∅), and

• a secret sharing scheme KSS = (KSS.Sh,KSS.Rec) with message space K, share
spaces Skss

i and access structure Γ.

Then we have to possible variants of sharing and reconstruction protocols, which differ
in the order of operations: In the first variant, the secret is first encrypted and then
shared, where in the second, it is first shared and the shares are encrypted afterwards.
Note that in the definition of the IDA used for our scheme, R′ = R in variant 1 and
R′ = Λ in variant 2. We do the proofs for a public-key version of the encryption scheme,
although this is not strictly necessary. All proofs go through for secret-key encryption
as well. We decided for this version as most fully homomorphic encryption schemes
support public-key encryption anyway. While we can reduce these to the secret-key

27

2 Computational Arithmetic Secret Sharing

version by setting as the secret key the pair of both keys, in a concrete run we have
security also for the case that a dealer stores its public key insecurely or decides to
publish it, for whatever reason.

Distribution Variant 1:
1. Generate a random key (pk, sk, ek) ← HE.Keygen(1κ) and encrypt the secret
m ∈M with HE using pk, i. e., f ← HE.Enc(pk,m),

2. Generate shares of the ciphertext by IDA, i. e., f ← IDA.Sh(f),

3. Generate shares of the encryption key by KSS, i. e., sk← KSS.Sh(sk),

4. Send (fi, ski) to player Pi.

Reconstruction Variant 1:
Let (fi, ski) be the share of player Pi and A ∈ A, then

1. reconstruct f from the shares using IDA: f = IDA.Rec((fi)Pi∈A),

2. reconstruct sk ∈ R〈K〉 from the second component of the shares using KSS:
sk = KSS.Rec((ski)Pi∈A),

3. decrypt m = HE.Dec(ψ(sk), f), which yields the reconstructed secret, where ψ
is a function reducing the key information in a way suitable for the encryption
scheme HE. So, if the FHE from Section 1.6.1 is used, we have ψ : R〈K〉 → P(K).

Distribution Variant 2:
1. Generate shares of the secret m by IDA, i. e., m← IDA.Sh(m),

2. Generate keys (pk, sk, ek) ← HE.Keygen(1κ) and encrypt the share vector m
component-wise with HE using pk, i. e., fi ← HE.Enc(pk,mi),

3. Generate shares of the secret key by KSS, i. e., sk← KSS.Sh(sk),

4. Send (fi, ski) to player Pi.

Reconstruction Variant 2:
Let (fi, ski) be the share of player Pi and A ∈ A, then

1. reconstruct sk ∈ R〈K〉 from the second to the last component of the shares using
KSS: sk = KSS.Rec((ski)Pi∈A),

2. decrypt mi = HE.Dec(ψ(sk),fi), which yields the share vector m of the secret.
As in variant 1, ψ is a function reducing the key information in a way suitable for
the encryption scheme HE.

3. reconstruct m from the the shares m using IDA: m = IDA.Rec((mi)Pi∈A). This is
the reconstructed secret.

Moreover, for homomorphic operations, we have:

28

2.1 Construction of an Arithmetic CSS Scheme

Addition. Given shares (fi, ski) and (f ′i , sk′i) of secrets m and m′ and the correspond-
ing evaluation keys eki and ek′i, we have

Add
(
(fi, ski), (f ′i , sk′i)

)
:=
(
HE.Eval

(
Cadd, (fi, eki), (f ′i , ek′i)

)
, ski + sk′i

)
.

This yields a share of m+m′.

Constant Multiplication. Given a share (fi, ski) of secret m ∈M, the corresponding
evaluation key eki and a factor u ∈ Λ, we have

CMult((fi, ski), u) := (HE.Eval(Ccmult, (fi, eki), u), u · ski).

This yields a share of u ·m.
For variant 1, we want the following diagram to be commutative:

Λt Rt (Rn)t

Λ R Rn

×t

i=1 HE.Enc(pki, ·)

C

×t

i=1 HE.Eval(IDA.Sh, ·)

HE.Eval(C, ·) HE.Eval(Lift(C), ·)

HE.Dec(sk1, . . . , skt, ·) HE.Eval(IDA.Rec, ·)

For variant 2, we have the following commutative diagram:

Λt (Λn)t (Rn)t

Λ Λn Rn

×t

i=1 IDA.Sh

C

×t

i=1 HE.Enc(pki, ·)n

Lift(C) HE.Eval(Lift(C), ·)

IDA.Rec HE.Dec(sk1, . . . , skt, ·)n

We compare both variants in Chapter 4. For now, we show that these schemes satisfy
the definition of a secret sharing scheme.

Proposition 2.1. Let CSS[HE, IDA,KSS] be the distribution scheme as defined above.
The following holds for both variants:

1. Let A be a PPT B-privacy adversary for CSS. Then there is a valid PPT adversary
B for attacking the IND-CPA security of HE and a PPT B-privacy adversary C
for KSS, such that

Advpriv
CSS,A(κ) ≤ AdvIND-CPA

HE,B (κ) + 2 ·Advpriv
KSS,C(κ).

29

2 Computational Arithmetic Secret Sharing

2. Let A be an A-reconstruction adversary of CSS (with share erasures). Then there
are A-reconstruction (erasure) adversaries B and C for KSS and IDA, resp., such
that

Advrec
CSS,A(κ) ≤ Advrec

KSS,B(κ) + Advrec
IDA,C(κ).

Moreover, when A is PPT, then B and C are PPT as well.

Hence, CSS is a computational secret sharing scheme with access structure Γ = (A,B).
Moreover, if IDA and KSS have (computationally) robust reconstructability, then so has
CSS.

Proof. This is a modification of the corresponding proof in [BR07, Theorem 4 and 5].
We first show the statements for variant 1 :

1. Let game GA1 be the priv-experiment of CSS with B-privacy adversary A, so that

Advpriv
CSS,A(κ) = 2 · Pr

[
out(GA1) = 1

]
− 1.

We devise a modification of game GA1 as follows: let (pk, sk, ek) denote the keys
used to encrypt the secretm ∈M by f ← HE.Enc(pk,m). Instead of sharing sk via
KSS.Sh, we independently draw an additional key (pk′, sk′, ek′)← HE.Keygen(1κ)
of the same length and share the secret key via KSS.Sh(sk′). We call this game GA2
and note that any corruption oracle calls send the part of the key share generated
by sk′. In effect, while the secret is encrypted with sk, the shares of the key
contain an independent key sk′.
Our task is now to construct a B-privacy adversary C for KSS to distinguish
games GA1 and GA2 . Internally, it simulates game GA1 and receives m0, m1 from A
as input. It then generates equal-length keys sk0, sk1 by HE.Keygen(1κ), together
with pk0, ek0, pk1, ek1, and sends these out as part of the priv game of KSS.
Furthermore, it draws b ← {0, 1}, encrypts f ← HE.Enc(pk0,mb) and creates a
share vector of f via f ← Sh(f). Whenever A uses its corruption oracle on player
Pi, C uses corrupt(sk, i) to obtain ski—the share of Pi of skb′ , b′ ← {0, 1}—and
answers A’s oracle call by si = (fi, ski). At the end, the output of GA1 is forwarded
as the output of C.
To recognize that C is a distinguisher of games GA1 and GA2 , note that if skb′ = sk0
we obtain game 1 and if skb′ = sk1, we have the second game. Hence,

Pr
[
out(GA1) = 1

]
− Pr

[
out(GA2) = 1

]
= Advpriv

KSS,C(κ).

Next, we show that a valid PPT adversary B attacking the IND-CPA security of
HE can be used to decide game 2, i. e.,

2 · Pr
[
out(GA2) = 1

]
− 1 ≤ AdvIND-CPA

HE,B (κ).

For this, B behaves as follows: Internally, it simulates game GA2 and receives
m0, m1 from A as input, and pk, ek as an input of the game. m0, m1 are then send

30

2.1 Construction of an Arithmetic CSS Scheme

m0, m1

b← {0, 1}
(pki, ski, eki)i=1,2 ← HE.Keygen(1κ)

fb ← HE.Enc(pk0, mb)

sk0, sk1

b′ ← {0, 1}
sk∗ ← KSS.Sh(skb′)

f∗ = IDA.Sh(fb)

b∗b∗

B-privacy adversary A for CSS

B-privacy adversary C for KSS

O1

O2

i

i

sk∗i

(f∗i , sk∗i)

Figure 2.1. Reduction step for the indistinguishability of games 1 and 2 in variant 1.
Here, O1 and O2 represent the corruption oracles of GA1 and the KSS-priv games, resp.

out as part of the IND-CPA game of HE. Upon retrieval of a ciphertext c∗ of mb,
b← {0, 1} under a key pk, it generates c∗ ← Sh(c∗), draws a key (pk′, sk′, ek′)←
HE.Keygen(1κ), and shares sk′ as well by sk′ ← Sh(sk′). Now, when A makes use
of its corruption oracle corrupt(s, i), B sends a share si = (c∗i , sk′i). When GA2
outputs a bit b∗, this is forwarded as the output of B.

This yields

Advpriv
CSS,A(κ) = 2

(
Pr
[
out(GA1) = 1

]
+
(
Pr
[
out(GA1) = 1

]
− Pr

[
out(GA2) = 1

]))
− 1

= 2 ·Pr
[
out(GA1) = 1

]
− 1 + 2 ·Advpriv

KSS,C(κ)

≤ AdvIND-CPA
HE,B (κ) + 2 ·Advpriv

KSS,C(κ).

2. Let m be the output of adversary A in the reconstruction game of CSS. Let
(pk, sk, ek) ← HE.Keygen(1κ) be the keys used to encrypt m into ciphertext
f ← HE.Enc(pk,m). The corruption oracle outputs si = (fi, ski) as usual.
Let s′ = (f ′, sk′), j be A’s output and denote by f ′ = IDA.Rec

(
fT t f ′T , j

)
and

sk′ = KSS.Rec
(
skT t sk′T , j

)
. In the case f = f ′ and ψ(sk) = ψ(sk′), the recovery

of sT t s′T yields m. So if E1 is the event that f 6= f ′ and E2 the event that
ψ(sk) 6= ψ(sk′), we have that

Advrec
CSS,A(κ) ≤ Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2].

31

2 Computational Arithmetic Secret Sharing

But note that we have Pr[E1] ≤ Advrec
IDA,B(κ) and Pr[E2] ≤ Advrec

KSS,C(κ), by
definition of IDA and KSS.

Next, we show the analogous statements for variant 2 :

1. Let game GA1 be the priv-experiment of CSS with B-privacy adversary A, so that

Advpriv
CSS,A(κ) = 2 · Pr

[
out(GA1) = 1

]
− 1.

Game GA2 is defined exactly as in the proof for variant 1. Our task is then to
construct a B-privacy adversary C for KSS to distinguish games GA1 and GA2 .
Internally, it simulates game GA1 and receives m0, m1 from A as input. It then
generates equal-length keys sk0, sk1 by HE.Keygen(1κ), together with pk0, ek0,
pk1, ek1, and sends these out as part of the priv game of KSS. Furthermore,
it draws b ← {0, 1}, shares mb by s ← IDA.Sh(mb) and encrypts the shares
component-wise under pk0: fi ← HE.Enc(pk0, si). The corruption oracle works
exactly as in the proof for variant 1.

To recognize that C is a distinguisher of games GA1 and GA2 , note that if skb′ = sk0
we obtain game 1 and if skb′ = sk1, we have the second game. Hence,

Pr
[
out(GA1) = 1

]
− Pr

[
out(GA2) = 1

]
= Advpriv

KSS,C(κ).

Next, we show that a valid PPT adversary B attacking the IND-CPA security of
HE can be used to decide game 2, i. e.,

2 · Pr
[
out(GA2) = 1

]
− 1 ≤ AdvIND-CPA

HE,B (κ).

For this, B behaves as follows: Internally, it simulates game GA2 and receives m0,
m1 from A as input, and pk, ek as an input of the game. Now, s0, s1 are generated
by IDA, and are sent out as part of the IND-CPA game of HE. Note that these
are multiple elements, but by a hybrid argument, this is not a problem. Upon
retrieval of a ciphertext vector c∗ of sb, b ← {0, 1} under a key sk, it draws a
key (pk′, sk′, ek′)← HE.Keygen(1κ), and shares sk′ by sk′ ← Sh(sk′). Now, when
A makes use of its corruption oracle corrupt(s, i), B sends a share si = (c∗i , sk′i).
When GA2 outputs a bit b∗, this is forwarded as the output of B.

This yields, as above

Advpriv
CSS,A(κ) ≤ AdvIND-CPA

HE,B (κ) + 2 ·Advpriv
KSS,C(κ).

2. This proof is completely analogous to the corresponding proof of variant 1.

32

2.1 Construction of an Arithmetic CSS Scheme

O1

m0, m1

(pk′, sk′, ek′)← HE.Keygen(1κ)
sk′ = KSS.Sh(sk′)

s0, s1

b′ ← {0, 1}

(pk, sk, ek)← HE.Keygen(1κ)

b∗b∗

B-privacy adversary A for GA
2

IND-CPA adversary B for HE

i (c∗i , sk′i)c∗i ← HE.Enc(pk, sbi)

pk, ek

c∗

s0 = IDA.Sh(m0)
s1 = IDA.Sh(m1)

Figure 2.2. Reduction step for the indistinguishability of IND-CPA in variant 2. Here,
O1 represents the corruption oracle of GA2 . The figure for variant 1 is obtained similarly.

2.1.1 Arithmetic Properties of the Scheme

To see that CSS is homomorphic, we have to specify a multiplication on the share spaces
and a special share function Sh′i on the share spaces, to fulfill Definition 1.3. For this, we
set for si = (fi, ski) and s′i = (f ′i , sk′i) in S ida

i ×R〈Skss
i 〉 with corresponding evaluation

keys ek, ek′:

si ~i s
′
i :=

(
HE.Eval

(
Cmult, (fi, ek), (f ′i , ek′)

)
, ski · sk′i

)
.

Now for variant 1, we set Sh′i := IDA.Sh×KSS.Sh, i. e., for (f , sk) ∈ S ida
i ×R〈Skss

i 〉, we
have:

Sh′i((f , sk)) =
(
HE.Eval(IDA.Sh, (f , ek))j ,KSS.Sh(sk)j

)
j=1,...,n

.

For variant 2, we need to use the exact same definition for Sh′i, as we need a share
function on the share spaces. Hence, we cannot use the standard IDA.Sh of variant 2,
but have to use IDA.Sh of variant 1. For this, we assume that these are compatible, i. e.,
the global Rec function of CSS can recover the result nevertheless.

Remark 2.1. If HE is C lin-homomorphic, then CSS is a linear secret sharing scheme.
For this to work, we had to impose an additional structure on key share space, which is
actually more than necessary for the scheme to work. When we choose as HE our scheme
of Section 1.6.1, we only need a set of secret keys to be reconstructed, and we can discard
the information, whether there was an addition or multiplication performed. However,

33

2 Computational Arithmetic Secret Sharing

if we replaced R〈K〉 and R〈Skss
i 〉 by the power sets P(K) and P(Skss

i), respectively, we
would not have a module structure in the usual sense, and hence no linear reconstruction
map. Let us nevertheless describe how this relaxation would work.

(P(K),∪) is a bounded semilattice, and can therefore be seen as a commutative
monoid, i. e., an abelian group without the property that every element has an additive
inverse. Note that (N,+) is an example of a commutative monoid. Moreover, it is
idempotent, which means that for any set A ∈ P(K) it holds that A ∪A = A.

Analogously, a commutative semiring with 1 is a set R with two binary operations +
and ∗, such that (R,+) and (R, ∗) are commutative monoids, in which the distributivity
laws a ∗ (b+ c) = (a ∗ b) + (a ∗ c), and (a+ b) ∗ c = (a ∗ c) + (b ∗ c), for a, b, c ∈ R hold,
and additionally 0 ∗ a = a ∗ 0 = 0, for a ∈ R. This is in essence the definition of a
commutative ring with 1, without the requirement that (R,+) is a group. An R-module
M over a semiring, or semimodule for short, is a commutative monoid (M,+) with an
operation R×M →M , such that r(x+ y) = rx+ ry, (r+ s)x = rx+ sx, (rs)x = r(sx)
and 1x = x. This is in essence the definition of a module over a ring, without the
condition that (M,+) is a group. Note that any commutative monoid is naturally an
N-semimodule. Moreover, an R-algebra A over a semiring is an R-semimodule, with
the additional R-bilinear multiplication operation.
In this sense Rec would still be a semimodule homomorphism, and it might be an

interesting question, whether these properties are sufficient to show that the scheme is
fitted for the application of MPC. We will leave this open for now.

Theorem 2.1. Let CSS[HE, IDA,KSS] = (Sh,Rec) be the secret sharing scheme as
defined above in variant 1 or 2. Let C ⊆ Ct→l be a class of circuits on M. If IDA
and KSS are C-arithmetic and HE is C-homomorphic, then CSS is (computationally)
C-arithmetic. Moreover, if IDA and KSS are compatible with d-fold multiplications as
in Remark 1.3, then so is CSS.

Proof. We check the three conditions of Definition 1.6.

1. The first condition holds, as we have the R-algebra structure enforced on the
share spaces by assumption.

2. Instead of showing that for any C-arithmetic B-privacy PPT adversary A of CSS,
there is a B-privacy PPT adversary B of CSS, such that

AdvC-priv
CSS,A(κ) ≤ Advpriv

CSS,B(κ),

we show that there is a valid PPT adversary B for attacking the IND-CPA security
of HE and a PPT C-arithmetic B-privacy adversary C for KSS such that

AdvC-priv
CSS,A(κ) ≤ t ·AdvIND-CPA

HE,B (κ) + 2 ·AdvC-priv
KSS,C(κ)

directly, as this is also negligible by assumption. We can reduce the IND-CPA
property of HE to the corresponding circuit game by a hybrid argument as in
[G09, Chapter 2, p. 32]. With this, the proof is very analog to the proof of
Proposition 2.1, and is therefore omitted here.

34

2.1 Construction of an Arithmetic CSS Scheme

3. By using Lemma 1.2 it suffices to show strong multiplicativity of Σ, if C contains
a circuit with a multiplication gate. That is, we have to show that for all
j ∈ {0, . . . , n}, m, m′ ∈M with s← Sh(m), s′ ← Sh(m′), it holds:

m ·m′ = Rec
(
s ∗ s′, j), where s ∗ s′ :=

∑
i

Sh′i
(
si ~i s

′
i

)
.

We do this first for variant 1: Let si = (fi, ski) and s′i = (f ′i , sk′i) in S ida
i ×R〈Skss

i 〉
with corresponding evaluation keys ek, ek′. Then:

Rec
(
s ∗ s′, j) =

∑
i

Rec
(
Sh′i((f , sk)i ~i (f ′, sk′)i), j

)
=
∑
i

Rec
(
Sh′i((HE.Eval

(
Cmult, (fi, ek), (f ′i , ek′)

)
, ski · sk′i)), j

)
=
∑
i

Rec((HE.Eval(IDA.Sh ◦Cmult, (fi, ek), (f ′i , ek′)),

KSS.Sh
(
ski · sk′i

)
), j)

=
∑
i

HE.Dec(ψ(KSS.Rec
(
KSS.Sh

(
ski · sk′i

))
),

(HE.Eval(IDA.Rec ◦ IDA.Sh ◦Cmult, (fi, ek), (f ′i , ek′)))

=
∑
i

HE.Dec
(
sk, sk′,HE.Eval

(
Cmult, (fi, ek), (f ′i , ek′)

))
= m ·m′.

Which is want we wanted to show. For variant 2, the deduction is similar:

Rec
(
s ∗ s′, j) =

∑
i

Rec
(
Sh′i((f , sk)i ~i (f ′, sk′)i), j

)
=
∑
i

Rec
(
Sh′i((HE.Eval

(
Cmult, (fi, ek), (f ′i , ek′)

)
, ski · sk′i)), j

)
=
∑
i

Rec((HE.Eval(IDA.Sh ◦Cmult, (fi, ek), (f ′i , ek′)),

KSS.Sh
(
ski · sk′i

)
), j)

=
∑
i

IDA.Rec(HE.Dec(ψ(KSS.Rec
(
KSS.Sh

(
ski · sk′i

))
),

HE.Eval
(
IDA.Sh ◦Cmult, (fi, ek), (f ′i , ek′)

)
=
∑
i

IDA.Rec(HE.Dec(sk, sk′,

HE.Eval
(
IDA.Sh ◦Cmult, (fi, ek), (f ′i , ek′)

)
))

Here, we need compatibility with the share function of variant 1, to get
=
∑
i

IDA.Rec
(
(IDA.Sh(m ·m′))i

)
= m ·m′.

35

2 Computational Arithmetic Secret Sharing

This holds, even when the share vector is restricted to a qualified player set in A.

4. For the compatibility with d-fold multiplications the proof proceeds exactly as in
the previous item for strong multiplicativity.

A Concrete Choice. Let us suggest a concrete choice for HE, IDA and KSS, which
fulfills the conditions needed in the construction of CSS. For this, let C be a circuit
class onM. Let n be the number of players and N ∈ N≥n and s ∈ N≥2. Let Γ = (A,B)
be an access structure.

1. For HE we choose the N -key C-homomorphic encryption scheme of Section 1.6.1.
Hence, we set R := Z[X]/Φd(X) as the ciphertext and the key space of HE,
although all elements will be represented modulo q, cf. Section 1.6.1. We set
n := ϕ(d) and take Λ := R/tR as our message space for some t < q. We require
that q and t are prime powers. Therefore, we can represent an element of R/qR
or R/tR as a vector in Fnq and Fnt , respectively, consisting of the coefficients of a
representation of a polynomial in R of degree ≤ n.

2. For IDA we choose an (n, s,A)-arithmetic information dispersal algorithm as in
Definition 3.6 over k = Fq (for variant 1) or k = Ft (for variant 2), with message
space kn and share spaces S ida

i = k.

3. For KSS we choose a an (n, s,Γ)-arithmetic secret sharing scheme as in Defini-
tion 3.6 over Fq with message space Fϕ(d)

q and share spaces Fq.

2.2 Secure Multiparty Computation based on CSS
First note that our CSS scheme is already suitable for the passively secure multiparty
computation protocol from Theorem 1.1, as in its proof, nothing about the linearity of
the share function is assumed.

In this section, due to time restraints, we only point the reader to the work of Maurer
[M03]. In his article, he makes use of so-called replicated secret sharing, also described
in Cramer, Damgård, and Ishai [CDI05], to construct an MPC protocol which does not
rely on specialized mathematical properties of the scheme, such as linearity of the share
map. See also [H+11, Section 3] for an improved and generalized version of the scheme
which also exhibits a graceful degradation property.

However, as mentioned in [CDI05] these may inflict an
(n
t

)
overhead on the commu-

nication. Note that a formal proof of the correctness of this argumentation is left as
future work.

36

3 Algebraic Geometric Secret Sharing

In this chapter we want to review the basics of algebraic geometric codes, and its use
for the construction of secret sharing schemes, in particular as in Cascudo, Cramer, and
Xing [CCX11; CCX12b]. The study of algebraic geometric codes, also called geometric
Goppa codes, in the field of secret sharing was initiated by [CC06], which allowed for
the construction of linear secret sharing schemes with good parameters and which work
over small fields. [D08] is a review article on codes with a focus on this application.
We start with a short overview of the chapter. In Section 3.1 we will introduce

some basics from the theory of algebraic function fields, which are used throughout the
chapter, including the Riemann–Roch theorem and geometric Goppa codes. Section 3.2
then gives an account on constructions of infinite class field towers, which are used to
construct certain codes in [CCX12b]. This is followed by Section 3.3 on Riemann–Roch
systems of equations. It formalizes the notion of equation systems on the dimension of
the Riemann–Roch space of divisor classes. These are used to obtain divisors which are
fitted for the secret sharing application and generalize the previous methods. We show
bounds on the so-called torsion limits in Section 3.4. Finally, we are then able to give a
construction of an infinite family of secret sharing schemes with interesting arithmetic
properties in Section 3.5, based on the results of the previous sections.
The main object of modern coding theory are global function fields. We give the

corresponding definitions based on the account of Rosen [R02]. An algebraic function
field (in one variable) over a field k is a field F , with k ⊆ F , and which contains an
element x, transcendental over k, such that F |k(x) is a finite algebraic extension. We
call k the constant field of F . Note that in the case of a finite k, we speak of global
function fields, as they are—together with algebraic number fields—an instance of
so-called global fields. As both types of fields share some striking similarities, they are
usually considered together in areas such as algebraic number theory. As we concentrate
on the case of function fields, we start with an arbitrary constant field, and reduce this
generality as needed. Note that the algebraic closure of k in F is finite over k, which is
why we usually assume that k is algebraically closed in F . In that case, we say that k
is the exact or full constant field of F .

3.1 Preliminaries
Let F be an algebraic function field over constant field k, which we abbreviate by F/k.
A valuation ring of F/k is a ring O such that k (O (F and for any a ∈ F , we have
that a ∈ O or a−1 ∈ O. Valuation rings are local, i. e., they contain a unique maximal
ideal. A prime in F is then a (discrete) valuation ring O with maximal ideal p. As a

37

3 Algebraic Geometric Secret Sharing

matter of simplification, we usually address the prime by its maximal ideal p, as no
confusion may arise.

Let κ denote the residue class field O/p, where O is the valuation ring associated to p.
The degree deg(p) of p is then the k-dimension of κ over k, denoted by [κ : k] as usual.
Any discrete valuation ring has attached to it a discrete valuation vp : F → Z ∪ {∞},
which is defined via the unique representation of non-zero elements of F as a = u · tn,
where t is a generator of p, u ∈ O× and n ∈ Z. Set vp(a) := n in this case, and
vp(0) :=∞.
A divisor D is an element of the free abelian group generated by the primes of F/k,

which we also call prime divisors in this context. Denote this group by Div(F). The
coefficients of D are denoted by vp(D). Using this, we define the degree of the divisor D
as deg(D) = ∑

p vp(D) · deg(p). We denote the set of divisors of degree d by Div(d)(F).
We can associate to any f ∈ F×, the principal divisor (f) of f . The corresponding

homomorphism (·) : F× → Div(F) is defined as f 7→ ∑
p vp(f) · p. Its image is called

Prin(F), the group of principal divisors of F . Moreover, two divisors are said to be
linearly equivalent, if their difference is a principal divisor. Using this equivalence
relation, the divisor class group Cl(F) := Div(F)/Prin(F) is obtained. As the degree
of a principal divisor is zero, the degree function factors through Cl(F). We denote
its kernel by JF and call it the zero divisor class group. The name is motivated by its
connection to the Jacobian variety of a smooth curve, when interpreted geometrically.
We will argue in Lemma 3.3 about why it is finite.

A divisor is said to be effective, if all its coefficients are positive. We obtain a partial
order on the divisors by setting D ≤ E :⇔ E −D is effective. A prime p is said to be a
zero or a pole at a ∈ F , if vp(a) is positive, or negative, respectively.

Example 3.1. Let us consider the simplest algebraic function field k(x)/k, the rational
function field. We want to determine the primes of k(x). For this, note that the non-zero
prime ideals of k[x] are exactly the ideals generated by a monic irreducible polynomial
p ∈ k[x]. The corresponding discrete valuation ring

Op :=
{
f
g : f, g ∈ k[x], p - g

}
of k(x) is the localization of k[x] at p and its maximal ideal p is a prime of k(x). There
is one additional prime, usually denoted by ∞, for which we have to consider the ring
k[1/x]. Its prime ideal generated by 1/x has attached the discrete valuation ring

O∞ :=
{
f
g : f, g ∈ k[x],deg f ≤ deg g

}
,

as its valuation v∞ is −deg (·). This list of primes is exhaustive. Note that the degree
of ∞ is one, while the degree of the previously discussed primes is equal to the degree
of the corresponding monic irrecducible polynomials.

3.1.1 The Riemann–Roch Theorem
In this section we describe the central theorem in the field of algebraic function fields.
Its importance is also given by its establishing of an important invariant which can be

38

3.1 Preliminaries

associated to any function field, namely the genus. Let us first introduce the notions to
formulate it.
The Riemann–Roch space of a divisor D is defined as

L(D) := {f ∈ F× : (f) +D ≥ 0} ∪ {0}.

It is the k-linear space of all rational functions with pole divisor bounded by D. Denote
its dimension as `(D) := dimk L(D). Note that ` : Div(F)→ N factors through Cl(F).
This is because if two divisors D and G are linearly equivalent, i. e., D = G+ (f) for
some f ∈ F×, we have that L(D) ∼= L(G) by the isomorphism x 7→ xf , implying the
equality for `(D) and `(G) as well.

Theorem 3.1 (Riemann–Roch). Let F/k be an algebraic function field and D ∈ Div(F).
Let K be a canonical divisor (for a definiton, see below) and g the genus of F . Then,

`(D) = `(K −D) + degD − g + 1.

Proof. See e. g., [R02, Chapter 6]. For a more constructive proof, see [H02].

There are a number of corollaries to the theorem, namely Riemann’s inequality,
stating that `(D) ≥ degD − g + 1, which becomes a equality, if degD ≥ 2g + 2 (unless
degD = 2g+2 and D is linearly equivalent to K). Moreover any divisor in the canonical
divisor class has degree 2g− 2 and Riemann–Roch dimension g, which can also be taken
as a characterization of the genus. To state how the canonical divisor class looks like,
we first introduce so-called Weil differentials.

Weil Differentials. Let F/k be an algebraic function field. By AF denote the adèle
ring of F . It is defined as

AF :=
{

(ap) ∈
∏

p
F̂p : ap ∈ Ôp for almost all primes p of F

}
,

where F̂p and Ôp are the completions with respect to p (see [N92] for a definition).
Moreover, for a divisor D = ∑

p n(p)p, denote by AF (D) the set of all (ap) ∈ AF ,
satisfying vp(ap) ≥ −n(p) for all primes p. A Weil differential, or differential for short,
in F is a k-linear function ω : AF → k, that vanishes on k and on AF (D) for some
divisor D. We denote the F -vector space of differentials on F by Ω. Moreover, for a
divisor D we denote the space of differentials that vanish on AF (D) as Ω(D), so we
have

Ω(D) = {ω ∈ Ω: (ω)−D ≥ 0} ∪ {0}.
Now, we can attach to any non-zero differential ω ∈ Ω the maximal divisor D, such

that ω vanishes on AF (D). We denote it by (ω). One can show that for x ∈ F× it holds
that (xω) = (x) + (ω) and that dimF Ω = 1, cf. [R02, Lemma 6.9, Proposition 6.10].
Using this, we can show that exactly all divisors of non-zero differentials lie in the same
divisor class in Cl(F), which we call the canonical class. To see this, let ω1, ω2 ∈ Ω be
non-zero, then there exists an x ∈ F×, such that ω1 = xω2, by the one-dimensionality

39

3 Algebraic Geometric Secret Sharing

of Ω. Moreover, we have (xω2) = (x) + (ω2) as stated before, so that (ω1) and (ω2)
are linearly equivalent. For the other direction, note that if a divisor D = (x) + (ω) is
given with x in F× (i.e. linearly equivalent to (ω)), then D = (xω) is the divisor of a
differential.

3.1.2 Geometric Goppa Codes

In our presentation of geometric Goppa codes, we mostly follow Duursma [D08]. He
motivates this class of codes by its good parameters, its multiplicative structure, and
efficient code construction and decoding algorithms. Moreover, he mentions secret
sharing as an interesting application of Goppa codes. Note that they are a generalization
of Reed–Solomon codes, which already have plenty applications in practice.

Linear Codes and Parameters. A linear code C of length n over Fq (q a prime power)
is a linear subspace of Fnq . We denote its dimension as k := dimFq C. An important
parameter of a code is its minimum distance. For this, we define a metric on the code,
which is known as the Hamming distance. Let x,y ∈ Fnq , then it is defined as

d(x,y) = |{i ∈ {1, . . . , n} : xi 6= yi}|,

and counts the number of differing entries of the two vectors. In the following, we
exclude the trivial code from our considerations. Then the minimum distance is, as its
name suggests the smallest possible distance of two elements of the code. We denote it
by d(C) or d if no confusion may arise.
Given the parameters n, k, d of a code, we have that k + d ≤ n+ 1, which is known

as the Singleton bound. As it is a beneficial property of a code to have large minimum
distance, because it allows good error correction, we give codes that attain the Singleton
bound, a distinguished name: maximum distance separable (MDS). Geometric Goppa
codes over function fields with genus zero are MDS.

Definition 3.1 (Geometric Goppa Codes). Let F/Fq a global function field, D = p1 +
· · ·+ pn a divisor, with pi, i = 1, . . . , n pairwise distinct primes of F of degree 1, and G
another divisor of F with disjoint support. Then the geometric Goppa code CL(D,G) is
defined as the image of the linear (evaluation) map

evD : L(G)→ Fnq , f 7→ (f(p1), . . . , f(pn)).

Its kernel is L(G−D), hence we have an isomorphism L(G)/L(G−D) ∼= CL(D,G).

As the divisors D and G need distinct support, the following theorem proves useful.

Theorem 3.2 (Approximation theorem). For a divisor D and a finite set of primes T ,
there exists a linearly equivalent divisor that has support outside T .

40

3.2 Infinite Class Field Towers

Ihara limit. Let F/Fq be an algebraic function field with exact constant field Fq.
Denote its genus by gF and its number of rational places by N(F). For a family
F = {Fi/Fq} of function fields with exact constant field Fq and gFi →∞ as i→∞, we
define the Ihara limit of F as

A(F) := lim sup
i→∞

N(Fi)
gFi

.

The quotient N(Fi)/gFi is a measure for the capacity of Fi for the purpose of algebraic
geometric coding, therefore it is a quest in algebraic coding theory to find families of
function fields with large A(F).
Let Nq(g) be the maximal number of primes of degree one for any function field

F/Fq with genus g. It holds that Nq(g) ∈ N due to the Serre bound, which implies
Nq(g) ≤ q + 1 + gb2√qc. A proof of this fact can be found in [S93, Chapter V.3]. The
Ihara limit is then defined as

A(q) := lim sup
g→∞

Nq(g)
g

.

In the following section we describe methods to find infinite families of global function
fields with a large Ihara limit.

3.2 Infinite Class Field Towers
Galois groups are topological groups and it turns out that they are profinite, i. e., they
are isomorphic to a projective limit of discrete finite groups. When studying towers of
field extensions, these play a crucial role and deserve a bit of explanation. We tacitly
assume all homomorphisms to be continuous.

We start with a definition of projective limits. Let (Gi)i∈I be a family of topological
groups and (I,≤) a filtered index set, i. e., a partially ordered set, such that any
two elements have an upper bound in I. Moreover, let (ϕi,j)i≤j∈I be a family of
homomorphisms ϕi,j : Gj → Gi (i, j ∈ I, i ≤ j), such that ϕi,i = idGi and ϕi,k = ϕi,j ◦
ϕj,k for all i ≤ j ≤ k ∈ I. In this case, we call ((Gi), (ϕi,j), I) a projective system
and define its projective limit as the topological group G = lim←−i∈I Gi, together with a
family of continuous projections πi : G→ Gi, satisfying the following universal mapping
property: for any topological group H with compatible ψi : H → Gi there is a unique
continuous homomorphism f : H → G for which the following diagram commutes for
all i ≤ j ∈ I:

H

G

Gj Gi

∃!fψj ψi

πj πi

ϕi,j

41

3 Algebraic Geometric Secret Sharing

For any projective system of topological groups, the projective limit exists and is
unique up to isomorphism, cf. [K70, Proposition 1.5].

Definition 3.2. A profinite group is a topological group which is isomorphic to a
projective limit of discrete finite groups. Furthermore, a finite p-group is a group of
order pf , f ∈ N, and a pro-p-group is a group isomorphic to a projective limit of discrete
finite p-groups.

Profinite groups are exactly the Hausdorff topological groups which are compact and
totally disconnected. Furthermore, any Galois group Gal(K |F) is a profinite group, and
the maximal p-extension of F contained in K, i. e., the composite of all Galois extensions
of p-power order contained in K, is a pro-p-group. Pro-p-groups are of interest, as their
group cohomology has a very useful interpretation when we talk about class field towers
and the cardinality of their Galois groups below.
Therefore, unless stated otherwise, let G be a pro-p-group. A family (gi)i∈I in G

is said to be convergent, if every open subgroup of G contains almost all gi. We will
start with definitions of generator and relation systems of pro-p-groups, as outlined in
[NSW13, pp. 224–227].

A generator system of G is a convergent family S = (gi) generating G as a topological
group. The rank d(G) of G is the cardinality of a minimal generator system of G,
where minimal means that it does not contain a proper generating system of G. (By an
argument of [NSW13, (3.9.1)] as in Remark 3.1 we will see that this is well-defined for
pro-p-groups, although we could define it as the infimum over the cardinalities of all
generator systems of G for now.) For a normal subgroup N of G, a generator system
of N as a normal subgroup of G is a convergent family S such that N is the smallest
closed normal subgroup of G containing all elements of S.
A pro-p-group A is said to be free over a set X, if it is accompanied with a map

i : X → A, such that every open subgroup contains almost all elements of i(X) and
for another map j : X → H with this property into a pro-p-group H, there is a unique
homomorphism ϕ : A→ H with j = ϕ ◦ i. For any set X, the free pro-p-group exists
and is unique up to unique isomorphism [NSW13, (3.5.14)].
Now consider a presentation of G, given by the exact sequence

1→ R→ A→ G→ 1,

where G has a minimal generator system S = (gi)i∈I , A is a free pro-p-group over
X = (xi)i∈I and the map A→ G sends xi to gi. The cardinality of a minimal generator
system of R as a normal subgroup of A is called the relation rank of G and denoted by
r(G).

Remark 3.1. We have the following equalities, which relate d(G) and r(G) to the
dimensions of certain cohomology groups of G. To avoid a rather longish presentation
of cohomology theory, which is not at the center of this thesis, we give a concise
description and refer the interested reader to [NSW13, Chapters 1 and 2]: For n ≥ 0 and
a G-module A, let Hn(G,A) denote the n-th cohomology group of G with coefficients

42

3.2 Infinite Class Field Towers

in A. The corresponding functor Hn(G,−) from the category of G-modules to the
category of abelian groups is defined as the n-th right derivation of the left exact functor
A 7→ AG (between the same categories). We write hn(G) := dimFp H

n(G,Z/pZ), where
Z/pZ is seen with trivial G-action, and obtain d(G) = h1(G) by [NSW13, (3.9.1)] and
r(G) = h2(G) by [NSW13, (3.9.5)].

Example 3.2. Examples of pro-p-groups are the p-adic integers Zp = lim←−n∈N Z/pnZ,
and of course every finite p-group, where the filtered index set is N with its usual
ordering. As N is also a filtered set when the divisibility relation is used, an important
example of a profinite group is Ẑ = lim←−n∈N Z/nZ and we have Ẑ ∼= ∏

p Zp. Note that
for both groups Zp and Ẑ are topologically generated by a single element, which is why
they are also called pro-cyclic.

As motivated above, the following theorem by Golod and Šafarevič, gives a criterion
on the infinity of a tower of p-extensions. We can think of G as the Galois group of a
maximal unramified p-extension of a global field F .

Theorem 3.3 (Golod–Šafarevič). Let G be a pro-p-group. If G is a finite p-group,
then r(G) > 1

4d(G)2.

Proof. See [NSW13, (3.9.7)].

For the rest of the chapter, let F be a global field, fix an algebraic closure F alg of
F and consider any extension field of F as a subextension of F alg. We give a short
summary on important notions on extensions of global fields. Let K |F be a finite
extension, p be a prime of F and P a prime of K above p. The ramification index of P
over p is the unique integer e satisfying vP(a) = e · vp(a) for any a ∈ F . We say that P
is unramified, if e = 1, and that the extension K |F is unramified, if any prime of K
is. Furthermore, a prime of F is said to be completely split in K if it decomposes into
[K :F] distinct primes in K. An abelian extension is a Galois extension with an abelian
Galois group.
Define the Hilbert class field of F to be the maximal unramified abelian extension

of F . It exists, because composites of unramified extensions are again unramified, and
composites of abelian extensions are again abelian. When we set F = F0, we can define
a tower of fields extensions, with Fi+1 being the Hilbert class field of Fi. We obtain the
sequence

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · , with F∞ :=
⋃
Fi,

where we would like to know whether it becomes stationary, i. e., whether F∞ = Fn for
some n ∈ N. If this is not the case, we have an infinite extension. To be able to use the
preceding theorem, which only holds for pro-p-groups, we consider the more tractable
sequence of p-extensions

F = F0 ⊂ F1(p) ⊂ F2(p) ⊂ · · · , with F∞(p) :=
⋃
Fi(p),

where Fi+1(p) is the maximal unramified abelian p-extension of Fi(p). We can now
determine the rank and relation rank of Gal(F∞(p) |F). (We will see in Lemma 3.1, why

43

3 Algebraic Geometric Secret Sharing

this is Galois.) The Golod–Šafarevič inequality then gives a criterion for the infinity of
the extension. When Golod and Šafarevič showed their inequality and thus the existence
of infinite class field towers over number fields, this was seen as a major achievement,
as the contrary would have implied Fermat’s last theorem, due to the principal ideal
theorem for Hilbert class fields.
However, for our focus on global function fields, this is not yet what we want, as

F1(p)|F would already be an infinite extension, due to the fact that constant field
extensions are unramified, cf. [S93, Theorem III.6.3]. This would result in Falg

q as
constant field of F1(p), if Fq is the constant field of F . To get better control on the
construction of codes based on Hilbert class fields, we define class fields with the
additional condition on a pre-specified set of primes to be completely split in the class
field extension. For this, we define the following notions.

Definition 3.3 ([NSW13, p. 452]). Let T be a set of primes of a global field F ,
containing the archimedean (infinite) primes, if F is a number field. We define the ring
of T -integers of F as OF, T := {a ∈ F : vp(a) ≥ 0, for all p /∈ T}. Moreover, its T -ideal
class group is denoted as ClT (F). It is the quotient Cl(F)/〈T 〉, where 〈T 〉 denotes the
closed subgroup generated by all primes in T .

For this, we get the following more refined result, using the notation of [NSW13,
p. 701]: Let F be a global field, and S, T be arbitrary sets of primes. With GTS (p) :=
Gal(F TS (p) |F) we denote the Galois group of F TS (p) |F , which is the maximal p-extension
of F unramified outside S and completely split at every prime of T . We consider the
case of S = ∅ and a non-empty T , where due to Remark 3.1 and class field theory it
holds: d(GTS (p)) = d(GTS (p)ab/p) and GT∅(p)ab/p ∼= ClT (F)/p, leading to

d(GT∅(p)) = d(ClT (F)) = dimFp ClT (F)/p. (3.1)

For references on class field theory, see [N92]. Moreover, for a more algorithmic and
direct approach to class field theory for global function fields, see [HM13]. With this in
mind, we define the T -Hilbert class field as the maximal unramified abelian extension,
completely split at every prime of T , and analogously, the (p, T)-Hilbert class field tower

F = F0 ⊂ F T1 (p) ⊂ F T2 (p) ⊂ · · · , with F T∞(p) =
⋃
F Ti (p),

where F Tn (p) is the maximal abelian unramified p-extension of F Tn−1 completely split at
every prime of Tn, with T = T1 and Tn is the set of primes of F Tn−1 above T . In the
following lemma, we show some basic facts about these notions.

Lemma 3.1. Let T be a finite set of primes, p a prime number and F Tn , F Tn (p), F T∞(p)
and F T∅ (p) be defined as above. Then it holds:

1. F Tn (p) ⊆ F Tn , for n ∈ N. Hence, if F has an infinite (p, T)-Hilbert class field
tower, than it also has an infinite T -Hilbert class field tower.

2. F Tn |F and F Tn (p) |F are Galois, for n ∈ N.

44

3.2 Infinite Class Field Towers

3. F∞ is the maximal pro-solvable (i. e., its Galois group is isomorphic to a projective
limit of solvable groups) unramified extension of F .

4. F T∞(p) = F T∅ (p), i. e., F T∞(p) is the maximal unramified p-extension, completely
split at every prime of T .

5. If T is non-empty and F a global function field, with exact constant field Fq, then
the exact constant field of the T -Hilbert class field is Fqd, where d is the greatest
common divisor of the degrees of primes in T .

Proof. 1. We use induction, as e. g., in [T10, Lemma 1]. F T1 (p) ⊆ F1 holds trivially
as any p-extension is also a field extension of F . Therefore, assume F Tn (p) ⊆ F Tn
for an n ∈ N and consider the following diagram of field extensions:

F Tn+1F
T
n F

T
n+1(p)

F Tn+1

F Tn F
T
n+1(p)

F Tn F Tn+1(p)

F Tn (p)

Note that composites of unramified extensions are again unramified, and compos-
ites of abelian extensions are again abelian. Therefore, F Tn+1F

T
n F

T
n+1(p)|F Tn is an

unramified abelian extension. This implies F Tn+1(p) ⊆ F Tn+1, due to maximality.

2. We use induction, as e. g., in the proof of [NX01, Theorem 2.7.7]. Separability
can be observed directly. Assume that F Tn is normal for an n ∈ N. For an
embedding σ : F Tn+1 → F alg over F , we have that σ(F Tn) = F Tn . Therefore, also
σ(F Tn+1)|σ(F Tn) = σ(F Tn+1) |F Tn is abelian unramified. By the maximality, we have
that σ(F Tn+1) ⊆ F Tn+1, and hence, F Tn+1 |F is normal. The same argument applies
to F Tn (p).

3. Let L denote the maximal pro-solvable unramified extension of F and note that
F∞ ⊆ L. For the other inclusion, take x ∈ L. Without loss of generality we
can assume F (x)|F to be Galois. Note that F (x) |F is unramified and its Galois
group G is solvable, as G is a finite quotient of a pro-solvable group. Therefore,
by Galois theory it follows that there exist

F = F (0) (F (1) (· · · (F (m) = F (x),

such that F (i+1) |F (i) is abelian unramified. Using induction we can show that
F (i) ⊆ Fi, and from that L ⊆ F∞ follows.

45

3 Algebraic Geometric Secret Sharing

4. Note that we have F Tn (p) ⊆ F T∅ (p) for any n ∈ N, and hence, F T∞(p) ⊆ F T∅ (p).
The other direction is a corollary of the previous item, as the Galois groups are
pro-p, and p-groups are solvable.

5. See [NX01, Proposition 2.5.7].

Concerning the last statement, if T is non-empty and the greatest common divisor
of the degrees of the primes in T is one, we have an extension which leaves the exact
constant field unchanged. We call extensions with this property geometric extensions.
The following theorem gives a criterion of the infinity of (p, T)-Hilbert class field

towers. Here, µp denotes the p-th roots of unity.

Theorem 3.4 (cf. [NSW13, (10.10.5)]). Let F be a global field and T a finite set of
primes of F . Let r be the number of archimedean primes of F , which is zero in the
function field case, p 6= charF be a prime number and

F = F0 ⊂ F T1 (p) ⊂ F T2 (p) ⊂ · · · , with F T∞(p) =
⋃
F Ti (p),

the (p, T)-Hilbert class field tower of F . If

dimFp ClT (F)/p ≥ 2 + 2
√
r + δp + |T |,

where δp = 1, if µp ⊆ F and 0 otherwise, then F T∞(p) |F is infinite.

Proof. Assume that G = Gal(F T∞(p) |F) is finite. Starting from the Golod–Šafarevič
inequality 1

4d(G)2 < r(G), we deduce by elementary term manipulations:

(d(G)− 2)2 < 4(r(G)− d(G) + 1). (∗)

We use the following result of [NSW13, (10.7.12)] as a blackbox:

r(G)− d(G) + 1 ≤ r + δp + |T |.

With this, (∗) further simplifies to

d(G) < 2 + 2
√
r + δp + |T |.

From class field theory we have noted above in (3.1), that

d(G) = dimFp ClT (F)/p,

leading to dimFp ClT (F)/p < 2 + 2
√
r + δp + |T |, which is a contradiction to our initial

assumption.

As we are mainly interested in the case of global function fields, we derive the following
corollary.

46

3.2 Infinite Class Field Towers

Corollary 3.1 (cf. [NX01, Theorem 2.7.7]). Let F/Fq be a global function field with
exact constant field Fq and T a finite set of primes of F . Let p 6= charFq be a prime
number and

F = F0 ⊂ F T1 (p) ⊂ F T2 (p) ⊂ · · · , with F T∞(p) =
⋃
F Ti (p),

the (p, T)-Hilbert class field tower of F . If

dimFp ClT (F)/p ≥ 2 + 2
√
|T |+ δp(q),

where δp(q) = 1, if p | (q − 1), and 0 otherwise, then F T∞(p)|F is infinite.

Proof. This is an immediate consequence of Theorem 3.4 and the fact that µp ⊆ Fq if
and only if p | (q − 1).

Proposition 3.1 (cf. [NX01, Theorem 2.7.6]). Let F/Fq be a global function field with
exact constant field Fq, gF > 1 and T a finite set of primes of degree one of F . For the
family F = {F Ti (p)/Fq} of algebraic function fields corresponding to the (T, p)-Hilbert
class field tower over F as in Corollary 3.1, the Ihara limit A(F) exists and satisfies

A(F) ≥ |T |
gF − 1 .

Proof. Let Fi := F Ti (p). We first need to determine the genus gFi and the number of
primes of degree 1 of Fi. We have that since Fi |F is a finite unramified, separable, and
geometric extension, 2gFi − 2 = [Fi :F] · (2gF − 2), due to the Riemann–Hurwitz genus
formula (see e. g., [NX01, Theorem 1.3.10]). Furthermore, let Ni denote the number of
primes of degree 1 of Fi. Then Ni ≥ |Ti| = [Fi :F] · |T |, by definition of T . This implies
that

A(F) := lim sup
i→∞

Ni

gFi

≥ lim
i→∞

[Fi :F] · |T |
[Fi :F](gF − 1) + 1 = |T |

gF − 1 .

Using this, we can now construct a family of function fields with an Ihara limit that
is large enough for our purposes using Kummer and Artin–Schreier extensions. Before
we start, let us quickly remind us of the theory of both types of extensions for global
function fields in the following lemma.

Lemma 3.2 (Kummer and Artin–Schreier extensions). Let F/Fq a global function field
with exact constant field Fq, with charFq = p > 0.

1. Let n ∈ N≥2 so that µn ⊆ Fq (which by convention implies gcd(p, n) = 1) and
suppose there is an u ∈ F , such that u 6= wd for all w ∈ F , d | n, d > 1. Then
F (y) with yn = u is called a Kummer extension of F . We have:
a) F (y)|F is a cyclic Galois extension of degree n.
b) Let p be a prime of F and P a prime of F (y) above p. Then its ramification

index is e = n/gcd(n, vp(u)), where gcd denotes the greatest common divisor.

47

3 Algebraic Geometric Secret Sharing

c) Let Fqk , k ∈ N≥1 denote the exact constant field of F (y), then

gF (y) = 1 + n

k

gF − 1 + 1
2
∑

p∈P(F)

(
1− gcd(n, vp(u))

n

)
deg p

.

2. Suppose there is an u ∈ F , such that u 6= wp − w for all w ∈ F . Then F (y) with
yp − y = u is called an Artin–Schreier extension of F . We have:
a) F (y)|F is a cyclic Galois extension of degree p.
b) A prime p of F is unramified in F (y) |F , if and only if there is a z ∈ F ,

such that vp(u− (zp − z)) ≥ 0.

Proof. See [S93, Propositions III.7.3 and III.7.8].

Using this, we can now construct the family of function fields as needed.

Theorem 3.5 ([CCX12b, Theorem 2.6]). For every q ≥ 8, except perhaps for q = 11 or
13, there exists a family of function fields over Fq such that the Ihara limit A(F) exists
and it satisfies A(F) > 1 + 1+δ2(q)

log2 q
, where δp(q) = 1, if p | (q − 1) and 0 otherwise.

Proof. Using Proposition 3.1, we want to find a global function field F/Fq with exact
constant field Fq, gF > 1, and an unramified abelian extension K |F of degree 2, such
that enough primes are completely split in K. We first assume that q ≥ 17.

1. Let additionally q be odd. Then µ2 ⊆ Fq and we can construct Kummer extensions
of degree 2. As x 7→ x2 is a group endomorphism of F×q , there are q−1

2 square
elements in Fq, for odd q. So, choose t1, . . . , t7 ∈ (Fq)2 non-zero and consider for
each i = 1, . . . , 7 the extension Ki = Fq(x, yi), where y2

i = x+ ti. We have that x
is completely split in Ki, i = 1, . . . , 7, as x = y2

i − ti = (yi +
√
ti)(yi −

√
ti), and

±√ti ∈ Fq.
Now let F = Fq(x, y), with y2 = ∏7

i=1(x+ ti). We have that F ⊆ K := K1 · · ·K7,
as y2 = (y1 · · · y7)2 and [F :Fq(x)] = 2. We want to show that K |F is an
unramified abelian extension. For this note that each Ki |Fq(x) ramifies at exactly
one finite prime with ramification index 2, while F |Fq(x) ramifies at all these
primes with the same index. Therefore K |F is unramified, as the ramification
index is multiplicative and all ramification of K |Fq(x) happens in F |Fq(x) already.
Note that Gal(Ki |Fq(x)) ∼= Z/2Z, and that we have an injective map

Gal(K |Fq(x)) ↪→
∏
i

Gal(Ki |Fq(x)), σ 7→ (
σ|Ki

)
i
.

A calculation using the fact that there is a bijection of the subgroups A of F×q /F×q
2

and the abelian extensions obtained by the adjunction of the roots of A to Fq,
then yields that Gal(K |Fq(x)) ∼= (Z/2Z)7. From this, due to the multiplicativity

48

3.3 Riemann–Roch System of Equations

of the extension degrees, we have that Gal(K |F) ∼= (Z/2Z)6. Moreover, note that
∞ and the two primes above x are completely split in K |F , so collect them in
a set T and note that by (3.1) we have dimF2 ClT (F)/2 = 6, which is equal to
2 + 2

√
|T |+ 1. As gF = 3 by item 1c of Lemma 3.2, we can use Proposition 3.1 to

obtain an (T, p)-Hilbert class field tower over F . For its family F = {F Ti (p)/Fq}
of algebraic function fields, it holds that A(F) ≥ |T |

gF−1 = 3
2 , which is larger than

1 + 2/ log2 q.

2. Now let q be even. Then charFq = 2 and we can construct Artin–Schreier
extensions of degree 2, which is analogous to the Kummer extension case.

3. Let us consider the remaining cases q ∈ {8, 9, 16}. For q = 8, we have by the by
the Drinfeld–Vlăduţ bound for the Ihara limit of square-powers q, which is

A(q) = √q − 1,

cf. [I82; VD83], that there is a family F of global function fields over F8 with
A(F) = 2

√
2− 1 ≥ 3

2 ≥ 1 + 1
log2(8) .

For q = 9 and q = 16 we get by the following bound on the Ihara limit, due to
[Z85; BGS05], that there is a family F over F9 and F16, such that A(F) = 2 and
A(F) = 3, respectively:

A(q3) = 2(q2 − 1)
q + 2 .

This leads to A(F) > 1 + 1+δ2(q)
log2(q) in both cases.

3.3 Riemann–Roch System of Equations
In this section we introduce equation systems on the dimension of Riemann–Roch spaces
of a special form. For this, let F be an algebraic function field with exact constant field
Fq, s ∈ N≥1, Yi ∈ Cl(F) and mi ∈ Z \ {0}, for i = 1, . . . , s. We call a system

{`(miX + Yi) = 0}si=1

a Riemann–Roch system of equations in X. A solution for the system is a [G] ∈ Cl(F),
satisfying all equations when substituted for X, cf. [CCX12b, Definiton 3.1]. While it is
easy to find a solution by choosing [G] with a degree such that deg(miX + Yi) < 0, we
aim for solutions where the degree of [G] is pre-specified.
Before we give a criterion on the solvability of these systems, let us argue about the

finiteness of JF in the following lemma.

Lemma 3.3 ([R02, Lemma 5.5 and 5.6]). Let F be a global function field with exact
constant field Fq. The number of effective divisors Ed of degree d ∈ N is finite. Moreover,
the cardinality hF := |JF | of the zero divisor class group JF is finite.

49

3 Algebraic Geometric Secret Sharing

Proof. For the first claim, let x ∈ F be transcendental over Fq and consider the finite
primes of Fq(x). As in Example 3.1, they are given by the monic irreducible polynomials
of Fq[x], of which there are only finitely many of a fixed degree d ∈ N. Note that
F |Fq(x) is a finite extension and thus, there are only finitely many primes of F of a
given degree. For an effective divisor of degree d, the degrees of primes in its support
are bounded by d as well, and hence are finitely many. As the bound holds also for the
coefficients, the number of effective divisors of a given degree is finite.

For the second claim, we want to show that we can find for any divisor A of degree 0,
an effective divisor of a specified degree s ∈ N. For this, let D be a divisor of degree 1.
By the theorem of Riemann–Roch (Theorem 3.1) it holds that `(sD +A) ≥ 1. So we
find an f ∈ L(sD+A) and can define B := (f) + sD+A, which is effective, of degree s
and linearly equivalent to sD +A. With this, we have that hF ≤ Es, which is finite by
the first claim.

hF is called the class number of F . We have the following theorem about solutions
for Riemann–Roch systems of equations. Here, JF [mi] denotes the mi-torsion in the
zero divisor class group, i. e., JF [mi] = {[D] ∈ JF : mi[D] = 0}.

Theorem 3.6 ([CCX12b, Theorem 3.2]). Consider the Riemann–Roch system of equa-
tions

{`(miX + Yi) = 0}si=1.

Let di = deg Yi, for i = 1, . . . , s. Denote by Er the number of effective divisors of
degree r in Div(F) for r ≥ 0, and 0 for r < 0. Let d ∈ Z and define ri = mid+ di for
i = 1, . . . , s. If

hF >
s∑
i=1

Eri ·|JF [mi]|,

then the Riemann–Roch system of equations has a solution [G] ∈ Cl(d)(F).

Proof. We look at the equations with non-negative degree only, and so consider for
i ∈ S := {1 ≤ i ≤ s : ri ≥ 0} the maps

ϕi : Cl(d)(F)→ Cl(mi·d)(F), X 7→ miX,

ψi : Cl(mi·d)(F)→ Cl(ri)(F), X 7→ X + Yi.

Note that each X ′ ∈ imϕi has exactly |JF [mi]| preimages, as the kernel of ϕi is
JF [mi] by definition. Furthermore, ψi is injective, as X 7→ X − Yi is its inverse.
We set ρi := ψi ◦ ϕi and obtain |ρ−1

i (Z)| ≤ |JF [mi]| for any effective divisor class
Z ∈ Cl(ri,+)(F). From this, we obtain |ρ−1

i (Cl(ri,+)(F))| ≤ |Cl(ri,+)(F)| · |JF [mi]| ≤
Eri ·|JF [mi]|, where Eri is the number of effective divisors of degree ri. Hence,

|
⋃
i∈S

ρ−1
i (Cl(ri,+)(F))| ≤

∑
i∈S

Eri ·|JF [mi]| =: z.

Since hF = |Cl(d)(F)| > z by assumption, there is an [G] ∈ Cl(d)(F) which is
not in ⋃i∈S ρ−1

i (Cl(ri,+)(F)). For this, it holds that ρi([G]) ∈ Cl(ri)(F) \ Cl(ri,+)(F).

50

3.4 Torsion Limit

Hence, there are no effective representatives of ρi([G]) and thus no f ∈ F×, such that
[(f)] + ρi([G]) ≥ 0. It follows that `(ρi([G])) = 0 for i ∈ S and finally, that [G] is a
solution of the system.

3.4 Torsion Limit
Let r > 1 and denote by JF [r] the r-torsion in the zero divisor class group.

Definition 3.4 (Torsion limit, [CCX12b, Definition 2.2]). For a family F = {Fi/Fq} of
function fields with gFi →∞ as i→∞, we define the r-torsion limit of F as

Jr(F) := lim inf
i→∞

logq |JFi [r]|
gFi

.

Moreover, we want to define a notion of the least possible r-torsion of a family of
function fields for which the Ihara limit exceeds a given value A. Define,

Jr(q, A) := lim inf
F∈F(A)

Jr(F),

where F(A) is a set of families F of function fields over Fq, such that the genus tends to
∞ and its Ihara limit is greater or equal to A.

Theorem 3.7. Let Fq be a finite field and let p > 1 be a prime.

1. Jp(q,A(q)) ≤ 1+δp(q)
logp q

, where δp(q) = 1, if p | (q − 1) and 0 otherwise.

2. If q is square and p | q, then Jp(q, A(q)) ≤ 1
(√q+1)·logp q

.

Proof. See [CCX12b, Theorem 2.3].

Corollary 3.2. The family of function fields of Theorem 3.5 satisfies A(F) > 1+J2(F).

Proof. By Theorem 3.7, we have for p = 2

A(F) > 1 + 1 + δp(q)
logp q

≥ 1 + Jp(q, A(q)).

As Jp(q, ·) is monotone by definition, it holds Jp(q,A(q)) ≥ Jp(q, A(F)).

3.5 Arithmetic Secret Sharing Schemes
In this section we bridge the gap to the previous chapter and the provable-security
notions of secret sharing. In the following, let M be a finite Fq-algebra, which is
finitely-generated as an Fq-module, and n, d ∈ N≥1. For an x ∈ M × Fnq , and a
set ∅ 6= A ⊆ {1, . . . , n}, denote by π0 : M × Fnq → M the projection of x to its
M-component, and πA : M× Fnq → F|A|q the projection of x to the coordinates of A.

51

3 Algebraic Geometric Secret Sharing

Definition 3.5 (Codex, cf. [CCX12a; J13]). Let C be a proper Fq-linear subspace of
M× Fnq and Γ = (A,B) an access structure on a player set P . We say that C is an
(n, d,Γ)-codex for M over Fq, if the following holds:

1. π0(C) =M,

2. There is A-reconstruction of d-fold products, i. e., for any A ∈ A there is a linear
(reconstruction) map ρA : Fnq →M, such that

a) ρA(∏d
i=1 ci) = ∏d

i=1 π0(ci), for all c1, . . . , cd ∈ C, and
b) π0(c) = ρA ◦ πA(c) for all c ∈ C.

3. C has B-privacy, i. e., for any B ∈ B, B 6= ∅, the projection π{0}∪B : C →
M× πB(C) is surjective. If additionally πB(C) = F|B|q , then C is said to have
uniformity.

For the following definition, recall the definitions from the beginning of Section 1.1.

Definition 3.6 (Arithmetic secret sharing scheme). Let Σ = (Sh,Rec) be an n-player
distribution scheme with message space M and share spaces Fq, and Γ = (A,B) an
access structure on a player set P . Let d ≥ 2 and Sh, Rec be defined via an (n, d,Γ)-codex
C forM over Fq as

Sh(m) = πP (c), for c← π−1
0 (m),m ∈M,

Rec(x, j) =
{
⊥, if ψ(x, j) = ⊥,
ρψ(x,j) ◦ ϕ(x), otherwise,

for x ∈ (Fq ∪ {♦})n, j ∈ {0, . . . , n},

where ϕ : (Fq ∪ {♦})n → Fnq is the identity map on Fnq and sends the empty share sign
♦ to 0, ψ : (Fq ∪ {♦})n × {0, . . . , n} → A ∪ {⊥} selects a set A ∈ A containing player
Pj , if j 6= 0 and not containing players of ♦-entries, or attains the value ⊥ if there is no
such set; and ρA is the reconstruction map guaranteed by Definition 3.5.
If B 6= ∅ we call Σ a (n, d,Γ)-arithmetic secret sharing scheme. It is said to have

uniformity if C is uniform. In the case of B = ∅, Σ is called a (n, d,A)-arithmetic
information dispersal algorithm (IDA). If Γ = Γ(t, r) with t ≥ 1, we may call Σ an
(n, t, d, r)-arithmetic secret sharing scheme for short.

To justify the name we have the following lemma. For this, recall the definitions from
the beginning of Section 1.2, including Definition 1.6.

Lemma 3.4. Let Σ be an (n, d,Γ)-arithmetic secret sharing scheme for M over Fq.
Then Σ is an n-player perfect-privacy linear Ct→l-arithmetic SSS over Fq with access
structure Γ, message space M and share spaces Fq. Moreover, its Sh function is linear
and is compatible with d-fold multiplications as in Remark 1.3.

Proof. 1. We first show that the advantage of any B-privacy adversary A in Experi-
ment 1.1 is zero. This argument follows [CCX12a, p. 3] and [C+09, Theorem 1].
Let B ∈ B, B 6= ∅, and C the codex of the arithmetic secret sharing scheme Σ.

52

3.5 Arithmetic Secret Sharing Schemes

Then the privacy of the codex implies that π{0}∪B : C → M× πB(C) sending
c ∈ C to (π0(c), πB(c)), has the property that for each m ∈M, s ∈ πB(C) there
is a c ∈ C with π{0}∪B(c) = (m, s). Moreover, note that as C is finite, their
number is finite and equal to the cardinality of the kernel of π{0}∪B and therefore
independent of the choice of (m, s).
Hence, if c ← C uniformly at random, we have that π{0}∪B(c) has the uniform
distribution onM×πB(C) and hence, also that π0(c) has the uniform distribution
onM. Furthermore, π0(c) and πB(c) are independently distributed, i. e., knowing
the outcome of πB(c) does not help distinguishing the uniformly distributed
elements of π0(C), as c← π−1

0 (m), for m ∈M by definition of Sh.

2. Our next step is to show that the advantage of any A-erasure reconstruction
adversary B in Experiment 1.2 is zero. For this note that by definition B has to
leave at least one set A ∈ A uncorrupted, so ψ in the definition of Rec will never
output ⊥ in this case. The guaranteed existence of the linear reconstruction map
ρA for an uncorrupted set A ∈ A then shows that the result is m = π0(c), c ∈ C,
even if c has been projected to its A-component.

3. Linearity can be seen directly asM, Fnq are finitely-generated Fq-modules and Sh
is a linear map.

4. The compatibility of d-fold multiplications is derived directly from the fact that
the codex has A-reconstruction of d-fold products.

5. Σ is Ct→l-arithmetic. For this, note that the security against Ct→l-arithmetic
B-privacy adversaries follows directly from Lemma 1.1 as Sh is linear. The property
for the reconstruction follows from the previous item and Lemma 1.2.

3.5.1 Construction of Arithmetic SSS

In this section we set as message spaceM := Fkq and aim to construct an infinite family
of codices, which can be interpreted as arithmetic secret sharing schemes as described
above.

Theorem 3.8 (cf. [CCX12b, Theorem 4.11], [CCX12a, Theorem 6]). Let d ≥ 2, (ω) ∈
Div(F) a canonical divisor, q1, . . . , qk, p1, . . . , pn be primes of degree one of F/Fq. We
write Q := ∑

qi and PI := ∑
i∈I pi for an index set I ⊆ {1, . . . , n}. If the system

{`(dX − PA) = 0, `((ω)−X + PB +Q) = 0}A∈minA,B∈maxB

is solvable, then there is a solution G ∈ Div(F) such that CL(G,D) is an (n, d,Γ)-codex
for Fkq over Fq with uniformity. (Here minA denotes the min-terms of A and maxB
the max-terms of B.)

Proof. For the geometric Goppa code C := CL(G,D) we need that G and D have
disjoint support. If this is not the case, we can simply use the approximation theorem

53

3 Algebraic Geometric Secret Sharing

(Theorem 3.2) to obtain a solution G ∈ Div(F) satisfying the equation system and
having a support disjoint from D.
As G fulfills the conditions `(dG − PA) = 0 for A ∈ A, we want to show that this

implies the A-reconstruction property of d-fold products for C. We first observe that
for f1, . . . , fd ∈ L(G), it holds that f1 · · · fd ∈ L(dG). Hence, let f ∈ L(dG) and
assume that f(PA) = 0. Then f ∈ L(dG − PA), which is {0}, as `(dG − PA) = 0
by assumption. Therefore, f = 0 and trivially f(Q) = 0. Hence, in the terminology
used above, ker(πA) ∩ C ⊆ ker(π0), which implies that for any two c, c′ ∈ C, with
πA(c) = πA(c′), we have that π0(c) = π0(c′). From this, we can construct the linear
reconstruction function ρA with π0(x) = ρA ◦ πA(x), for all x ∈ C.
Moreover, we have that G satisfies `((ω) − G + PB + Q) = 0 for B ∈ B. Let

B = {i1, . . . , it}. In the following we show that this implies B-privacy of C. For this,
note that the kernel of the evaluation map ev : L(G)→ Fk+t

q , given by

f 7→ (f(q1), . . . , f(qk), f(pi1), . . . , f(pit))

is L(G − Q − PB). This implies that the dimension of the image space of ev is
`(G)− `(G−Q−PB). Using the Riemann–Roch theorem (Theorem 3.1), we obtain for
a canonical divisor (ω):

`(G) = `((ω)−G) + deg(G)− g + 1,
`(G−Q− PB) = `((ω)−G+Q+ PB) + deg(G−Q− PB)− g + 1,

and
`(G)− `(G−Q− PB) = `((ω)−G)− `((ω)−G+Q+ PB) + deg(Q+ PB).

As Q+ PB is effective, we have that `((ω)−G) ≤ `((ω)−G+Q+ PB), which is zero
by assumption. Hence, the dimension of the image space of ev is deg(Q+ PB) = k + t,
implying the surjectivity of ev. So, we have B-privacy with uniformity.

Note that by Theorem 3.6, the equation system of Theorem 3.8 has a solution for
Γ = (A,B), if there is an s ∈ Z such that

hF >

|maxB|∑
i=1

Esi +
|minA|∑
i=1

Eri ·|JF [d]|, (3.2)

where E i is the number of effective divisors of degree i, si = 2g − 2 − s + |Bi| + k,
ri = ds − |Ai| and maxB = {B1, . . . , B|maxB|}, minA = {A1, . . . , A|minA|}. For the
threshold case of Γ = Γ(t, n− t), this simplifies to

hF >

(
n

t

)(
Es′

1
+ Er′

1
·|JF [d]|

)
, (3.3)

where s′i = 2g − 2− s+ t+ k, r′i = ds− n+ t, cf. [CCX12b, Corollary 4.12].
We have the following bound on the number of effective divisors of a given degree.

54

3.5 Arithmetic Secret Sharing Schemes

Proposition 3.2 ([CCX12b, Proposition 3.4]). Let F be an algebraic function field
with exact constant field Fq. For d ∈ N, let Ed denote the number of effective divisors
of degree d in Div(F). Suppose g := gF ≥ 1, then, for any d ∈ N, with d ≤ g − 1, we
have

Ed ≤
g · hF

qg−d−1(√q − 1)2 .

Using this, we can simplify (3.2) in the case of gF ≥ 1 and ri, si ≤ gF − 1 to

1 >
|maxB|∑
i=1

g

qg−si−1(√q − 1)2 +
|minA|∑
i=1

g

qg−ri−1(√q − 1)2 · |JF [d]|

= g

qg−1(√q − 1)2

q2g−2−s+k
|maxB|∑
i=1

q|Bi| + qds|JF [d]|
|minA|∑
i=1

q−|Ai|

.
Establishing this inequality in a family of global function fields with beneficial

properties, allows one then to prove the following theorem.

Theorem 3.9 ([CCX12b, Theorem 4.13]). Let Fq be a finite field and d ∈ Z≥2. If
there exists 0 < a ≤ A(q), such that a > 1 + Jd(q, a), then there is an infinite family of
(n, t, d, n− t)-arithmetic secret sharing schemes for Fkq over Fq with t-uniformity where
n is unbounded, k = Ω(n) and t = Ω(n).

As the existence of such an a has been shown in Corollary 3.2 all in all it follows that
there is an infinite family of (n, t, d, n− t)-arithmetic secret sharing schemes for Fkq over
Fq with t-uniformity where n is unbounded, k = Ω(n) and t = Ω(n).

55

4 Conclusion

As far as we know, this thesis provides the first computational secret sharing scheme
with homomorphic properties, such as strong multiplicativity. It works by a combination
of homomorphic encryption and sharing and is introduced in two variants. In the first
variant, the secret is first encrypted and shared afterwards, while in the second, it is
first shared and the shares are then encrypted. For the first variant to work, we have
to execute the share map as a circuit by using the homomorphic evaluation of the
encryption scheme, suggesting that it is less preferable, as it starts with some encryption
noise already. In contrast, the encryption of the shares in the second version is fresh; it
has therefore less noise and works with larger circuits, if a leveled fully homomorphic
encryption scheme is used. Noting this, the second variant has the only caveat that
the special share map on the share spaces as in the definition of strongly multiplicative
secret sharing schemes, is not as directly obtained as the one in the first version.
Note that typically the encryption map of a fully homomorphic encryption scheme

is not linear—in contrast to its decryption, provided that we can execute arbitrary
circuits—and therefore our scheme satisfies only a weaker version of linear secret sharing
as usually found in the literature. We add to this variant a discussion on secrecy
guarantees after a calculation on the shares, in a game-based manner typical for the
field of provable security. With this, it is easy to see the suitability for passively secure
multiparty computation, however, for most constructions of verifiable secret sharing
and actively secure MPC it is usually presumed that the share map is linear, e. g., as in
[CDM00; FM02; C+03]. We point the reader to a protocol of Maurer [M03], which does
not make use of these properties, and should work well together with our homomorphic
CSS scheme.

Concerning Chapter 3, we gave an overview of a part of the literature of secret sharing
schemes using algebraic geometric codes, with focus on a paper of Cascudo, Cramer, and
Xing [CCX12b]. Here, we highlighted their construction of infinite class field towers with
the theorem of Golod–Šafarevič and their use of Riemann–Roch systems of equations to
construct asymptotically good families of arithmetic secret sharing schemes.

Future Work
Concerning future work we would like to summarize the open questions raised during the
course of writing the thesis. This includes a yet missing formal proof of suitability for
actively secure MPC of our homomorphic CSS scheme. Moreover, a formal analysis of
the information rate of our scheme and the communication complexity for its use in VSS
and MPC protocols, would provide a nice addition to the thesis. It would be interesting
whether there are more powerful criteria for secrecy against C-homorophic B-privacy

57

4 Conclusion

adversaries. As we have noted in the text, we could have devised the scheme in a way
to work on power sets of the key space instead of the algebra generated by its elements,
yielding less information which is not needed for the correct reconstruction. For this, it
would be necessary to analyze, whether all statements, including the suitability for VSS
and MPC protocols, still hold if the reconstruction is a linear map of semimodules over
semirings, see Remark 2.1. Moreover, we would have liked to include a short discussion
on circuit privacy of multikey fully homomorphic encryption schemes.

For the second part it would be interesting to generalize Theorem 3.5 to other values
of torsion besides 2. For this, the statement might follow from more general arguments
as in [NSW13, (10.10.3)], which would need to be adapted to our setting of global
function fields where we have to additionally keep an eye on the growth of the genus.
During the last section, we gave indications of the generalization of the notion of a codex
to non-threshold access structures and it would be interesting to adapt Theorem 3.9 to
this setting.

58

Glossary of Symbols

(f) principal divisor of f ∈ F×. 38
(ω) canonical divisor. 39
[K :F] vector space dimension, degree of a field extension. 38
[a]i commitment of player Pi containing value a. 13
‖·‖ maximum norm of polynomial coefficients of R. 20
|·| length of a string, cardinality of a set, absolute value. 1
A set of qualified players who can reconstruct the secret message. 2
A(F) Ihara limit of a family F of function fields. 41
A(q) Ihara limit of all families of function fields over Fq. 41
A1 t A2 union of set systems A1 and A2. 7
A complement of a set system A. 2
AdvIND-CPA

HE,A (κ) advantage of an IND-CPA adversary A. 19
Advpriv

Σ,A(κ) advantage of privacy adversary A in Σ. 2, 3
AdvC-priv

Σ,A (κ) advantage of a C-homomorphic privacy adversary A. 9
Advrec

Σ,A(κ) advantage of reconstruction adversary A in Σ. 3
AdvC-rec

Σ,A (κ) advantage of a C-homomorphic reconstruction adversary A. 9
AF adèle ring of F . 39
AF (D) set of all (ap) ∈ AF , satisfying vp(ap) ≥ −n(p) for all primes p. 39
B set of unqualified players ignorant about the secret. 2
C class of algebraic circuits. 8
CL(D,G) Goppa code with divisors D, G. 40
Cl(F) class group of F , defined as Div(F)/Prin(F). 38
Clin class of all linear circuits. 8
ClT (F) T -class group of F . 44
corrupt(s, i) corruption oracle, returns share of player Pi. 3
Ct→l class of all t-ary circuits with l output nodes. 8
C≤L class of all circuits with polynomial size and depth ≤ L. 8
d(C) mimimal distance of a code C. 40
d(G) rank of a pro-p-group. 42
d(x,y) Hamming distance of two vectors x, y. 40
deg(p) degree of a prime p. 38
Div(d)(F) set of divisors of degree d on F . 38
Div(F) group of divisors on F . 38
Dq,w(·) decomposition map. 21
ek evaluation key to compute homomorphically on ciphertexts. 17
Er number of effective divisors of degree r. 50

59

Glossary of Symbols

EvalKey(s) map returning the evaluation key attached to a share vector. 9
F/k algebraic function field over a constant field k. 37
F TS (p) maximal p-extension of F unramified outside S and completely split

at every prime of T . 44
F T∞(p) union of all extensions in a (T, p)-Hilbert class field tower. 44
gF genus of an algebraic function field. 39
HE homomorphic encryption scheme. 17, 27, 36
hF class number of F . 50
idX identity map on X. 5
IDA information dispersal algorithm. 27, 36
im(·) image space of a map. 4
JF zero divisor class group of F . 38
JF [r] r-torsion elements in the zero divisor class group of F . 50
Jr(q, A) least possible r-torsion of a family of function fields for which the

Ihara limit exceeds a given value A. 51
Jr(F) r-torsion limit of a family F . 51
kab abelian closure of a field k. 44
kalg algebraic closure of a field k. 43
KSS key secret sharing scheme. 27, 36
L(D) Riemann–Roch space of divisor D. 39
`(D) Fq-dimension of the Riemann–Roch space L(D). 39
Lift(C) map lifting a circuit C from the message to the share space. 9
M message space of a secret sharing scheme. 1, 4
maxB max-terms of B. 2
minA min-terms of A. 2
N natural numbers, including zero. 1
N(F) number of primes of degree one of F . 41
negl(κ) negligible function, less than 1/p(κ), for any polynomial p. 1
Nq(g) maximal number of primes of degree one for any function field F/Fq

with genus g. 41
O discrete valuation ring of a prime. 37
OF,T ring of T integers. 44
P set of n players, P := {P1, . . . , Pn}. 1
p a prime of an algebraic function field. 38
P(X) power set of a set X. 2
Pq,w(·) power-of-w map. 21
Prin(F) group of principal divisors on F . 38
Q3 Q3 access structure. 7
R ring Z[X]/Φd(X) used in NTRU-based encryption schemes. 20
R randomness space. 5
r(G) relation rank of a pro-p-group. 42
R[T] polynomial ring with coefficients in R and variable T . 6
Rec reconstruction map Rec : ∏n

i=1(Si ∪ {♦})× {0, . . . , n} →M∪ {⊥}
of an SSS. 1

60

Glossary of Symbols

rt(x) representation of x modulo t. 21
R× invertible elements (units) of R. 6
R〈X〉 R-algebra generated on a set X. 27
S share space of a secret sharing scheme, S1 × · · · × Sn. 4
s ∗ s′ multiplication of shares, including resharing. 6
Sh share map Sh : M→ S of a secret sharing scheme. 1
Sh′i share function on the share space Si of Pi. 7, 33
si ~i s′i multiplication in share space Si of Pi. 6, 33
sT vector s restricted to index set T . 1
sT t s′T the vector x with xi = si if i /∈ T and xi = s′i if i ∈ T . 5
vp(·) valuation of a prime p. 38
x← χ sampling x according to probability distribution χ. 1, 20
Γ access structure specifying qualified/unqualified player coalitions. 2
Γ(t, r) threshold access structure. 2
∆ equals bq/tc. 21
Σ A secret sharing scheme, Σ = (Sh,Rec). 1, 3, 4
Φd(X) d-th cyclotomic polynomial. 20
Ω space of Weil differentials on an algebraic function field. 39
δ supa,b∈R

(
‖ab‖
‖a‖‖b‖

)
. 20

κ the security parameter κ ∈ N. 2
µp pth roots of unity. 46
π0(c) π0 : M× Fnq →M, projection of x to itsM-component. 51
πA(c) πA : M× Fnq → F|A|q , projection of x to the coordinates of A.. 51
ϕ ring homomorphism of LSSS, also Euler phi function. 4, 7
ϕ∗(M) restriction of scalars of moduleM. 5
ψ key reduction in CSS, ψ : R〈K〉 → P(K). 28
ω Weil differential ω. 39

61

Bibliography

[A+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. “Multiparty Computation with Low
Communication, Computation and Interaction via Threshold FHE”. In:
Advances in Cryptology – EUROCRYPT 2012. Ed. by David Pointcheval and
Thomas Johansson. Vol. 7237. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 483–501. doi: 10.1007/978-3-642-29011-4 29.

[B+13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
Security for a Ring-Based Fully Homomorphic Encryption Scheme. 2013.
Cryptology ePrint Archive, Report 2013/075.

[B11] Amos Beimel. “Secret-Sharing Schemes: A Survey”. In: Coding and Cryp-
tology. Ed. by Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao,
Yuansheng Tang, Huaxiong Wang, and Chaoping Xing. Vol. 6639. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 11–46.
doi: 10.1007/978-3-642-20901-7 2.

[B12] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP”. In: Advances in Cryptology – CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, pp. 868–886. doi:
10.1007/978-3-642-32009-5 50.

[B79] George R. Blakley. “Safeguarding cryptographic keys”. In: Managing Re-
quirements Knowledge, International Workshop on (1979), p. 313. doi:
10.1109/AFIPS.1979.98.

[B96] Amos Beimel. “Secure Schemes for Secret Sharing and Key Distribution”.
Ph.D. thesis. Technion – Israel Institute of Technology, 1996. url: http://
www.cs.bgu.ac.il/~beimel/Papers/thesis.ps.

[BC95] Philippe Béguin and Antonella Cresti. “General Short Computational Secret
Sharing Schemes”. In: Advances in Cryptology – EUROCRYPT ’95. Ed. by
Louis C. Guillou and Jean-Jacques Quisquater. Vol. 921. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 1995, pp. 194–208. doi:
10.1007/3-540-49264-X 16.

[BGS05] Juscelino Bezerra, Arnaldo Garcia, and Henning Stichtenoth. “An explicit
tower of function fields over cubic finite fields and Zink’s lower bound”. In:
Journal für die Reine und Angewandte Mathematik 589 (2005), pp. 159–199.
doi: 10.1515/crll.2005.2005.589.159.

63

http://dx.doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2013/075
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1109/AFIPS.1979.98
http://www.cs.bgu.ac.il/~beimel/Papers/thesis.ps
http://www.cs.bgu.ac.il/~beimel/Papers/thesis.ps
http://dx.doi.org/10.1007/3-540-49264-X_16
http://dx.doi.org/10.1515/crll.2005.2005.589.159

Bibliography

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption Without Bootstrapping”. In: Proceedings of the
3rd Innovations in Theoretical Computer Science Conference. ITCS ’12.
Cambridge, Massachusetts: ACM, 2012, pp. 309–325. doi: 10.1145/2090236.
2090262.

[BKP11] Michael Backes, Aniket Kate, and Arpita Patra. “Computational Verifiable
Secret Sharing Revisited”. In: Advances in Cryptology – ASIACRYPT 2011.
Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 590–609. doi:
10.1007/978-3-642-25385-0 32.

[BL90] Josh C. Benaloh and Jerry Leichter. “Generalized Secret Sharing and Mono-
tone Functions”. In: Proceedings of the 8th Annual International Cryptology
Conference on Advances in Cryptology. CRYPTO ’88. London, UK: Springer-
Verlag, 1990, pp. 27–35. url: http://dl.acm.org/citation.cfm?id=646753.
704890.

[BR07] Mihir Bellare and Phillip Rogaway. “Robust Computational Secret Sharing
and a Unified Account of Classical Secret-sharing Goals”. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security.
CCS ’07. Alexandria, Virginia, USA: ACM, 2007, pp. 172–184. doi: 10.1145/
1315245.1315268.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomor-
phic Encryption from (Standard) LWE”. In: Proceedings of the 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science. FOCS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 97–106. doi:
10.1109/FOCS.2011.12.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomorphic Encryp-
tion from Ring-LWE and Security for Key Dependent Messages”. In: Ad-
vances in Cryptology – CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
pp. 505–524. doi: 10.1007/978-3-642-22792-9 29.

[C+03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. “Efficient
Multi-party Computation over Rings”. In: Advances in Cryptology – EU-
ROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, pp. 596–613. doi: 10.1007/3-540-
39200-9 37.

[C+08] Hao Chen, Ronald Cramer, Robbert Haan, and Ignacio Cascudo. “Strongly
Multiplicative Ramp Schemes from High Degree Rational Points on Curves”.
In: Advances in Cryptology – EUROCRYPT 2008. Ed. by Nigel Smart.
Vol. 4965. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 451–470. doi: 10.1007/978-3-540-78967-3 26.

64

http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/2090236.2090262
http://dx.doi.org/10.1007/978-3-642-25385-0_32
http://dl.acm.org/citation.cfm?id=646753.704890
http://dl.acm.org/citation.cfm?id=646753.704890
http://dx.doi.org/10.1145/1315245.1315268
http://dx.doi.org/10.1145/1315245.1315268
http://dx.doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/3-540-39200-9_37
http://dx.doi.org/10.1007/3-540-39200-9_37
http://dx.doi.org/10.1007/978-3-540-78967-3_26

Bibliography

[C+09] Ignacio Cascudo, Hao Chen, Ronald Cramer, and Chaoping Xing. “Asymp-
totically Good Ideal Linear Secret Sharing with Strong Multiplication over
Any Fixed Finite Field”. In: Advances in Cryptology – CRYPTO 2009. Ed. by
Shai Halevi. Vol. 5677. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 466–486. doi: 10.1007/978-3-642-03356-8 28.

[C01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science. FOCS ’01. Washington, DC, USA: IEEE
Computer Society, 2001, 136sqq. url: http://dl.acm.org/citation.cfm?id=
874063.875553.

[C97] László Csirmaz. “The Size of a Share Must Be Large”. In: Journal of
Cryptology 10.4 (1997), pp. 223–231. doi: 10.1007/s001459900029.

[CC06] Hao Chen and Ronald Cramer. “Algebraic Geometric Secret Sharing Schemes
and Secure Multi-Party Computations over Small Fields”. In: Advances in
Cryptology – CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 521–536.
doi: 10.1007/11818175 31.

[CCX11] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. “The Torsion-Limit
for Algebraic Function Fields and Its Application to Arithmetic Secret
Sharing”. In: Advances in Cryptology – CRYPTO 2011. Ed. by Phillip
Rogaway. Vol. 6841. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 685–705. doi: 10.1007/978-3-642-22792-9 39.

[CCX12a] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The Arithmetic
Codex. 2012. Cryptology ePrint Archive, Report 2012/388.

[CCX12b] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. “Torsion Limits and
Riemann–Roch Systems for Function Fields and Applications”. In: ArXiv
e-prints (2012). id: 1207.2936 [math.AG].

[CD05] Ronald Cramer and Ivan Damgård. “Multiparty Computation, an Introduc-
tion”. In: Contemporary Cryptology. Advanced Courses in Mathematics –
CRM Barcelona. Birkhäuser Basel, 2005, pp. 41–87. doi: 10.1007/3-7643-
7394-6 2.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. “Share Conversion, Pseu-
dorandom Secret-Sharing and Applications to Secure Computation”. In:
Theory of Cryptography. Ed. by Joe Kilian. Vol. 3378. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2005, pp. 342–362. doi:
10.1007/978-3-540-30576-7 19.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli Maurer. “General Secure Multi-
party Computation from any Linear Secret-Sharing Scheme”. In: Advances
in Cryptology – EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 316–334.
doi: 10.1007/3-540-45539-6 22.

65

http://dx.doi.org/10.1007/978-3-642-03356-8_28
http://dl.acm.org/citation.cfm?id=874063.875553
http://dl.acm.org/citation.cfm?id=874063.875553
http://dx.doi.org/10.1007/s001459900029
http://dx.doi.org/10.1007/11818175_31
http://dx.doi.org/10.1007/978-3-642-22792-9_39
https://eprint.iacr.org/2012/388
http://arxiv.org/abs/1207.2936
http://dx.doi.org/10.1007/3-7643-7394-6_2
http://dx.doi.org/10.1007/3-7643-7394-6_2
http://dx.doi.org/10.1007/978-3-540-30576-7_19
http://dx.doi.org/10.1007/3-540-45539-6_22

Bibliography

[CF02] Ronald Cramer and Serge Fehr. “Optimal Black-Box Secret Sharing over
Arbitrary Abelian Groups”. In: Advances in Cryptology – CRYPTO 2002.
Ed. by Moti Yung. Vol. 2442. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2002, pp. 272–287. doi: 10.1007/3-540-45708-9 18.

[D08] Iwan M. Duursma. “Algebraic Geometry Codes: General Theory”. In: Ad-
vances in Algebraic Geometry Codes. Ed. by Edgar Martínez-Moro, Carlos
Munuera, and Diego Ruano. Vol. 5. Series on Coding Theory and Cryptology.
Singapore: World Scientific Publishing Co. Pte. Ltd., 2008. Chap. 1, pp. 1–48.
doi: 10.1142/9789812794017 0001. url: https://www.worldscientific.com/doi/
suppl/10.1142/6767/suppl file/6767 chap01.pdf.

[FM02] Serge Fehr and Ueli Maurer. “Linear VSS and Distributed Commitments
Based on Secret Sharing and Pairwise Checks”. In: Advances in Cryptology –
CRYPTO 2002. Ed. by Yung Moti. Vol. 2442. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2002, pp. 565–580. doi: 10.1007/3-540-
45708-9 36.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. 2012. Cryptology ePrint Archive, Report 2012/144.

[G01] Ana Gàl. “A characterization of span program size and improved lower
bounds for monotone span programs”. In: Computational Complexity 10.4
(2001), pp. 277–296. doi: 10.1007/s000370100001.

[G09] Craig Gentry. “A Fully Homomorphic Encryption Scheme”. Ph.D. thesis.
Stanford, CA, USA: Stanford University, 2009.

[H+11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. “Graceful
Degradation in Multi-Party Computation (Extended Abstract)”. In: In-
formation Theoretic Security. Ed. by Serge Fehr. Vol. 6673. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2011, pp. 163–180. doi:
10.1007/978-3-642-20728-0 15.

[H02] Florian Hess. “Computing Riemann–Roch Spaces in Algebraic Function
Fields and Related Topics”. In: Journal of Symbolic Computation 33.4 (2002),
pp. 425–445. doi: 10.1006/jsco.2001.0513.

[HM13] Florian Hess and Maike Massierer. “Class Field Theory for Global Function
Fields”. In: ArXiv e-prints (2013). id: 1304.2131 [math.NT].

[I82] Yasutaka Ihara. “Some remarks on the number of rational points of algebratic
curves over finite fields”. In: Journal of the Faculty of Science, the University
of Tokyo. Sect. 1A, Mathematics 28.3 (1982), pp. 721–724. url: http://
ci.nii.ac.jp/naid/120000869903/en/.

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. “Secret sharing scheme
realizing general access structure”. In: Electronics and Communications in
Japan (Part III: Fundamental Electronic Science) 72.9 (1989), pp. 56–64.
doi: 10.1002/ecjc.4430720906.

66

http://dx.doi.org/10.1007/3-540-45708-9_18
http://dx.doi.org/10.1142/9789812794017_0001
https://www.worldscientific.com/doi/suppl/10.1142/6767/suppl_file/6767_chap01.pdf
https://www.worldscientific.com/doi/suppl/10.1142/6767/suppl_file/6767_chap01.pdf
http://dx.doi.org/10.1007/3-540-45708-9_36
http://dx.doi.org/10.1007/3-540-45708-9_36
https://eprint.iacr.org/2012/144
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1007/978-3-642-20728-0_15
http://dx.doi.org/10.1006/jsco.2001.0513
http://arxiv.org/abs/1304.2131
http://ci.nii.ac.jp/naid/120000869903/en/
http://ci.nii.ac.jp/naid/120000869903/en/
http://dx.doi.org/10.1002/ecjc.4430720906

Bibliography

[J13] A. E. de Jonge. “Bounds on the parameters of arithmetic codices”. Bachelor
thesis. Mathematical Institute, Leiden University, 2013.

[K+13] Ryo Kikuchi, Koji Chida, Dai Ikarashi, Koki Hamada, and Katsumi Taka-
hashi. “Secret Sharing Schemes with Conversion Protocol to Achieve Short
Share-Size and Extendibility to Multiparty Computation”. In: Information
Security and Privacy. Ed. by Colin Boyd and Leonie Simpson. Vol. 7959. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 419–
434. doi: 10.1007/978-3-642-39059-3 29.

[K70] Helmut Koch. Galoissche Theorie der p-Erweiterungen. Vol. 10. Mathema-
tische Monographien. VEB Deutscher Verlag der Wissenschaften, Berlin,
1970.

[K94] Hugo Krawczyk. “Secret Sharing Made Short”. In: Advances in Cryptology
– CRYPTO ’93. Ed. by Douglas R. Stinson. Vol. 773. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1994, pp. 136–146. doi:
10.1007/3-540-48329-2 12.

[KW93] Mauricio Karchmer and Avi Wigderson. “On span programs”. In: Structure
in Complexity Theory Conference, Proceedings of the 8th Annual. 1993,
pp. 102–111. doi: 10.1109/SCT.1993.336536.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. “Generalized Compact Knap-
sacks Are Collision Resistant”. In: Automata, Languages and Programming.
Ed. by Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener.
Vol. 4052. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 144–155. doi: 10.1007/11787006 13.

[LO13] Joshua Lampkins and Rafail Ostrovsky. Communication-Efficient MPC
for General Adversary Structures. 2013. Cryptology ePrint Archive, Report
2013/640.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices
and Learning with Errors over Rings”. In: Advances in Cryptology – EURO-
CRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 1–23. doi: 10.1007/978-3-642-
13190-5 1.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. “On-the-fly
Multiparty Computation on the Cloud via Multikey Fully Homomorphic
Encryption”. In: Proceedings of the 44th Symposium on Theory of Computing.
STOC ’12. New York, NY, USA: ACM, 2012, pp. 1219–1234. doi: 10.1145/
2213977.2214086.

[M03] Ueli Maurer. “Secure Multi-party Computation Made Simple”. In: Security
in Communication Networks. Ed. by Stelvio Cimato, Giuseppe Persiano, and
Clemente Galdi. Vol. 2576. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003, pp. 14–28. doi: 10.1007/3-540-36413-7 2.

67

http://dx.doi.org/10.1007/978-3-642-39059-3_29
http://dx.doi.org/10.1007/3-540-48329-2_12
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1007/11787006_13
https://eprint.iacr.org/2013/640
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1145/2213977.2214086
http://dx.doi.org/10.1007/3-540-36413-7_2

Bibliography

[N03] Jesper Buus Nielsen. “On protocol security in the cryptographic model”.
Ph.D. thesis. BRICS, Computer Science Department, University of Aarhus,
2003.

[N92] Jürgen Neukirch. Algebraische Zahlentheorie. Springer Berlin Heidelberg,
1992.

[NSW13] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology
of Number Fields. Sec. Ed., corr. sec. print. Vol. 323. Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013. url:
https://www.mathi.uni-heidelberg.de/~schmidt/NSW2e/.

[NX01] Harald Niederreiter and Chaoping Xing. Rational Points on Curves over
Finite Fields: Theory and Applications. Vol. 288. London Mathematical
Society Lecture Note Series. Cambridge, UK: Cambridge University Press,
2001.

[P12] Carles Padró. Lecture Notes in Secret Sharing. 2012. Cryptology ePrint
Archive, Report 2012/674.

[PK09] Abhishek Parakh and Subhash Kak. “Space Efficient Secret Sharing: A
Recursive Approach”. In: ArXiv e-prints (2009). id: 0901.4814 [cs.CR].

[R02] Michael Rosen. Number Theory in Function Fields. Graduate Texts in
Mathematics 210. Springer New York, 2002.

[R89] Michael O. Rabin. “Efficient Dispersal of Information for Security, Load
Balancing, and Fault Tolerance”. In: Journal of the ACM 36.2 (1989),
pp. 335–348. doi: 10.1145/62044.62050.

[RP11] Jason K. Resch and James S. Plank. “AONT-RS: Blending Security and
Performance in Dispersed Storage Systems”. In: Proceedings of the 9th
USENIX Conference on File and Storage Technologies. FAST ’11. San Jose,
California: USENIX Association, 2011, pp. 1–12. url: http://dl.acm.org/
citation.cfm?id=1960475.1960489.

[S79] Adi Shamir. “How to Share a Secret”. In: Communications of the ACM
22.11 (1979), pp. 612–613. doi: 10.1145/359168.359176.

[S93] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Berlin
Heidelberg, 1993.

[SS11] Damien Stehlé and Ron Steinfeld. “Making NTRU as Secure as Worst-
Case Problems over Ideal Lattices”. In: Advances in Cryptology – EU-
ROCRYPT 2011. Ed. by Kenneth G. Paterson. Vol. 6632. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2011, pp. 27–47. doi:
10.1007/978-3-642-20465-4 4.

[T10] Oliver Thomas. p-Klassengruppen und p-Klassenkörpertürme. Zahlentheo-
retisches Seminar: Klassenkörpertürme – der Satz von Golod–Šafarevič.
Vortrag 12. Heidelberg, 2010. url: https://www.mathi.uni-heidelberg.de/
~bartels/Alt/Klassenkoerpertuerme10/Vortrag12.pdf. unpublished.

68

https://www.mathi.uni-heidelberg.de/~schmidt/NSW2e/
https://eprint.iacr.org/2012/674
http://arxiv.org/abs/0901.4814
http://dx.doi.org/10.1145/62044.62050
http://dl.acm.org/citation.cfm?id=1960475.1960489
http://dl.acm.org/citation.cfm?id=1960475.1960489
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/978-3-642-20465-4_4
https://www.mathi.uni-heidelberg.de/~bartels/Alt/Klassenkoerpertuerme10/Vortrag12.pdf
https://www.mathi.uni-heidelberg.de/~bartels/Alt/Klassenkoerpertuerme10/Vortrag12.pdf

Bibliography

[TVW13] Stephen R. Tate, Roopa Vishwanathan, and Scott Weeks. Encrypted Secret
Sharing and Analysis by Plaintext Randomization. 2013. Cryptology ePrint
Archive, Report 2013/264.

[V+03] Vaikuntanathan Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan,
and Kwangjo Kim. “On the Power of Computational Secret Sharing”. In:
Progress in Cryptology – INDOCRYPT 2003. Ed. by Thomas Johansson and
Subhamoy Maitra. Vol. 2904. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003, pp. 162–176. doi: 10.1007/978-3-540-24582-7 12.

[VD83] Serge G. Vlăduţ and Vladimir G. Drinfeld. “Number of points of an algebraic
curve”. In: Functional Analysis and Its Applications 17.1 (1983), pp. 53–54.
doi: 10.1007/BF01083182.

[Z85] Thomas Zink. “Degeneration of Shimura surfaces and a problem in coding
theory”. In: Fundamentals of Computation Theory. Ed. by Lothar Budach.
Vol. 199. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1985, pp. 503–511. doi: 10.1007/BFb0028834.

69

https://eprint.iacr.org/2013/264
http://dx.doi.org/10.1007/978-3-540-24582-7_12
http://dx.doi.org/10.1007/BF01083182
http://dx.doi.org/10.1007/BFb0028834

	Introduction
	1 Preliminaries
	1.1 Secret Sharing Schemes
	1.2 Linear and Multiplicative Secret Sharing Schemes
	1.2.1 Multiplicative Secret Sharing
	1.2.2 Games for Homomorphic Secret Sharing Schemes

	1.3 Universal Composability
	1.4 Linear Distributed Commitments
	1.5 Secure Multiparty Computation
	1.6 Homomorphic Encryption
	1.6.1 A Multikey FHE-scheme based on NTRU

	2 Computational Arithmetic Secret Sharing
	2.1 Construction of an Arithmetic CSS Scheme
	2.1.1 Arithmetic Properties of the Scheme

	2.2 Secure Multiparty Computation based on CSS

	3 Algebraic Geometric Secret Sharing
	3.1 Preliminaries
	3.1.1 The Riemann–Roch Theorem
	3.1.2 Geometric Goppa Codes

	3.2 Infinite Class Field Towers
	3.3 Riemann–Roch System of Equations
	3.4 Torsion Limit
	3.5 Arithmetic Secret Sharing Schemes
	3.5.1 Construction of Arithmetic SSS

	4 Conclusion
	Glossary of Symbols
	Bibliography

