

Card-Based Cryptography Meets Formal Verification

ASIACRYPT 2019 | Alexander Koch, Michael Schrempp, Michael Kirsten

KIT DEPARTMENT OF INFORMATICS, INSTITUTE OF THEORETICAL INFORMATICS

- Secrets: Do I fancy him/her?
- To compute: Is there mutual interest?
- → Secure 2-party AND without computers

- Secrets: Do I fancy him/her?
- To compute: Is there mutual interest?
- → Secure 2-party AND without computers

- Secrets: Do I fancy him/her?
- To compute: Is there mutual interest?
- → Secure 2-party AND without computers

- Secrets: Do I fancy him/her?
- To compute: Is there mutual interest?
- → Secure 2-party AND without computers

The "Five-Card Trick"

By den Boer (1989, with cards), Tom Verhoeff (with tiles)

The "Five-Card Trick"

By den Boer (1989, with cards), Tom Verhoeff (with tiles)

The "Five-Card Trick" By den Boer (1989, with cards), Tom Verhoeff (with tiles) **Configurations:** YES/YES Yes/No NO/YES No/No indistinguishable after rotation!

Reveal Tiles ...

If you say **NO**, you do not learn anything about what the other person said!

Reveal Cards ... (equivalent)

If you say **NO**, you do not learn anything about what the other person said!

Typical in Card-Based Crypto: Idealized Cards

In Reality: We often only have a Standard Deck of Real Cards

In Reality: We often only have a Standard Deck of Real Cards

In Reality: We often only have a Standard Deck of Real Cards

Disadvantage:

Slightly more complex objects and bit encoding

Advantage:

More readily available (does not need multiple decks/custom cards)

General Research Question

We want to compute arbitrary Boolean circuits For this, we need protocols for AND, NOT and Bit COPY

Main Question: What are the best such protocols?

Criteria:

- Number of cards used
- Running time behavior (finite vs. Las Vegas)
- Number of steps
- Practicality of Shuffling steps

Our Question today: What are the best AND protocols with a standard deck? **Contribution:**

- We give a new, shorter (Las Vegas) AND protocol with 4 cards (one less than before)
- We prove by formal methods that it is of shortest length (6 steps)
- We prove that finite-runtime AND protocols need at least 5 cards

Context: Physical Assumptions in Cryptography

Physical Objects

Physical Processes

Main advantages:

- Transparency and ease of understanding for the user
- Strong, otherwise unachievable, security guarantees

German ID card CC-0, TAN generator/Scratch-off cards copyrighted, Playing cards CC-BY-NC-2.0 by Philippa Willitts, Solar cycle CC-0 by NASA, Schroedinger's cat CC-BY-SA-3.0 Unported by ADA&Neagoe

Our Setting in Card-Based Cryptography

Standard-Deck Cards:

With indistinguishable back sides: , each card is unique: |1 || 2 || 3 |...

Two cards encode a bit:

$$a b = \begin{cases} 0 & \text{for } a < b \\ 1 & \text{for } a > b \end{cases}$$

Three main actions: Turning cards, Shuffling (e.g. card cutting), and Announcing output positions

- Input: face-down bits (a, b):

Our Setting in Card-Based Cryptography

Standard-Deck Cards:

With indistinguishable back sides: , each card is unique: $\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$...

Two cards encode a bit:

$$a b = \begin{cases} 0 & \text{for } a < b \\ 1 & \text{for } a > b \end{cases}$$

Three main actions: Turning cards, Shuffling (e.g. card cutting), and Announcing output positions

Requirements for AND

- Input: face-down bits (*a*, *b*):
- Output: face-down bit $(a \land b)$:

- We do not learn anything non-trivial about input and output.

5-Card protocol of Niemi and Renvall [NR99], Placing Cards

5-Card protocol of Niemi and Renvall [NR99], Placing Cards

Configurations:

5-Card protocol of Niemi and Renvall [NR99], Placing Cards

Configurations:

Our 4-Card protocol, Placing Cards

Our 4-Card protocol

Our 4-Card protocol

Our 4-Card protocol

Our 4-Card protocol: Case of 1 as separator, others similar

Our 4-Card protocol: Case of 1 as separator, others similar

Configurations:

Our 4-Card protocol: Case of 1 as separator, others similar

Configurations:

States of a Protocol

A combinatorial way to express the states in which the protocol is in

Previous Way to Speak about Possible Configurations:

Combinatorial Format:

Yes/Yes
Yes/No
NO/YES
No/No

States of a Protocol

A combinatorial way to express the states in which the protocol is in

Previous Way to Speak about Possible Configurations:

Combinatorial Format (reduced to outputs):

1423	Yes
1324	No
1234	No
1243	No

We use "calculus of states" to derive new states from states via turn, and shuffle.

11 2019-12-11 Koch, Schrempp, Kirsten – Card-Based Cryptography Meets Formal Verification

Example Impossibility Result

Theorem

There is no secure 4-Card AND protocol with a run shorter than 6 steps and standard decks

Proof Idea

Method: Bounded Model Checking

- We used Software Bounded Model Checking: CBMC
- In C code: What does it mean to execute a protocol of length *L* steps
- Protocol arbitrary via non-determinististic choice: nondet_action()
- Assert: We do not reach a final state (i.e. we search a model that violates the assertion)

Results

- \rightarrow Every 4-card standard deck AND protocol needs \geq 6 steps
- \rightarrow Our protocol (with 6 actions) is optimal

Running times

- proof: 57 h on a 6-Core AMD Opteron with 2.40 GHz, 32 GB RAM
- SAT formula contains 150 Mio. clauses

Numbers of Cards for AND with a Standard Deck

f: finite running time, **p**: practicable shuffling (drawn uniformly random from a permutation group) * Formal proof of protocol-length minimality with Software Bounded Model Checking

Numbers of Cards for AND with a Standard Deck

f: finite running time, **p**: practicable shuffling (drawn uniformly random from a permutation group) * Formal proof of protocol-length minimality with Software Bounded Model Checking

Numbers of Cards for AND with a Standard Deck

f: finite running time, p: practicable shuffling (drawn uniformly random from a permutation group) * Formal proof of protocol-length minimality with Software Bounded Model Checking Future Work:

- Refine CBMC method to work without length bound and with arbitrary decks
- Do finite-runtime standard-deck AND protocols exist with less than 8 cards?