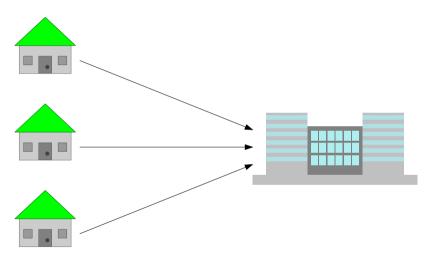
Private Stream Aggregation with Labels in the Standard Model

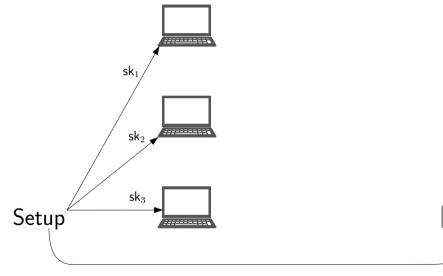

Johannes Ernst ¹ Alexander Koch ²

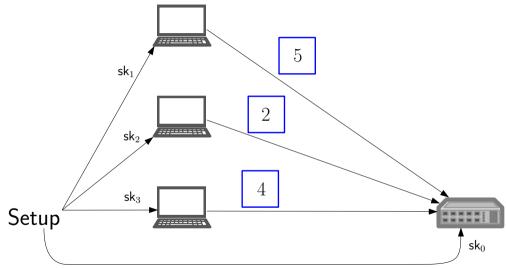
¹University of St. Gallen

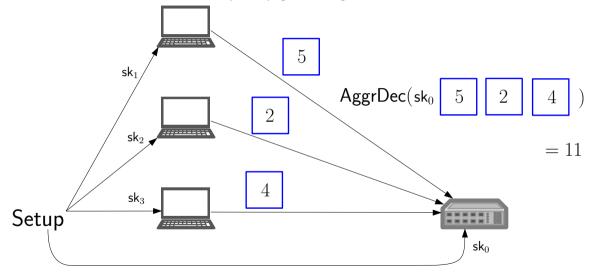
²Karlsruhe Institute of Technology

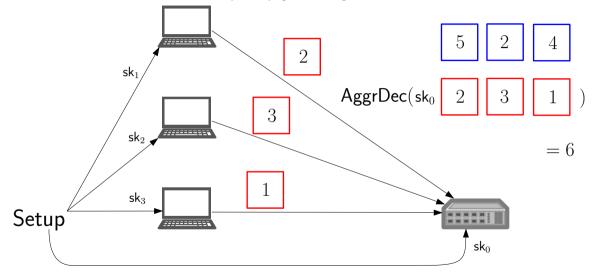
2021-07-12

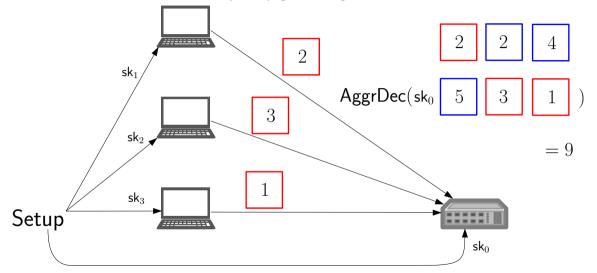
Smart Meter Aggregation



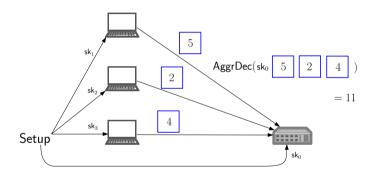

Setup







 sk_0


Private Stream Aggregation

PSA

$$\mathsf{Setup}(1^\lambda,1^n) \to (\mathsf{pp},\mathsf{sk}_0,\dots,\mathsf{sk}_n)$$

$$\mathsf{Enc}(\mathsf{pp},\mathsf{sk}_i,\ell,x_i) o c_{i,\ell}$$

$$\begin{array}{c} \mathsf{AggrDec}(\mathsf{pp},\mathsf{sk}_0,\ell,c_{1,\ell},\ldots,c_{n,\ell}) \\ \to \mathsf{sum} \colon \sum_{i \in [n]} \mathsf{x}_{i,\ell} \end{array}$$

Aggregator Obliviousness

- Indistinguishability based game
- Encryption queries
- Corruption queries
- Challenge queries with $\{x_i^0, x_i^1\}_{i \in U}$

Aggregator Obliviousness

- Indistinguishability based game
- Encryption queries
- Corruption queries
- Challenge queries with $\{x_i^0, x_i^1\}_{i \in U}$

Conditions for A:

ullet If ${\mathcal A}$ has corrupted the aggregator:

$$\sum x_i^0 = \sum x_i^1$$

 encrypt-once: only get one message per user and label

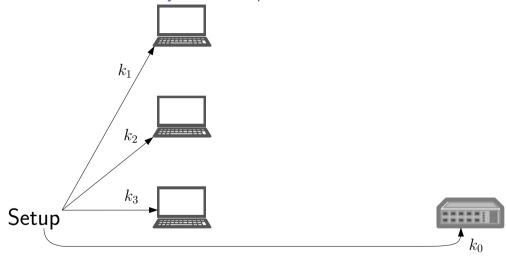
Contribution

- PSA with labels in standard model based on key-homomorphic PRF
 - ▶ similar to [Val17], using proof techniques of [ABG19]
- Implementation with lattice based PRF in ROM
- Performance evaluation and comparison
- Description of decentralized setup and fault tolerance

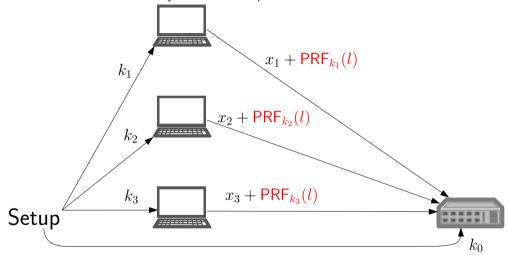
Key-Homomorphic Pseudorandom Functions

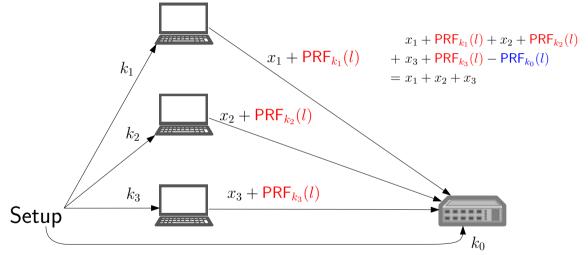
- Pseudorandom Function:
 - ▶ $\mathsf{PRF}_k \colon \mathcal{Z} \to \mathcal{Y}$
 - ▶ $k \stackrel{\$}{\leftarrow} \mathcal{K}$: PRF $_k \stackrel{c}{\approx}$ RF
- Key-Homomorphic Pseudorandom Function:
 - ▶ (K, +), (Y, +) are groups
 - $\forall z, k_1, k_2 : \mathsf{PRF}_{k_1}(z) + \mathsf{PRF}_{k_2}(z) = \mathsf{PRF}_{k_1 + k_2}(z)$

Setup



Setup

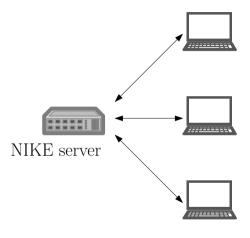


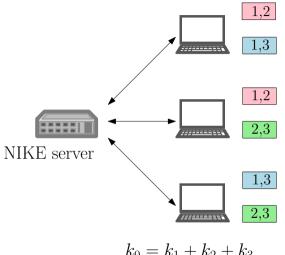

$$k_0 = k_1 + k_2 + k_3 \Rightarrow \mathsf{PRF}_{k_0}(l) = \mathsf{PRF}_{k_1}(l) + \mathsf{PRF}_{k_2}(l) + \mathsf{PRF}_{k_3}(l)$$

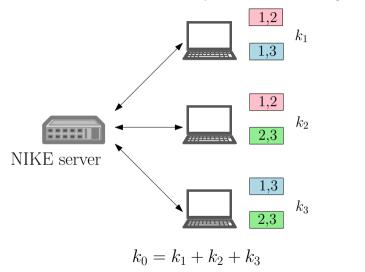
$$k_0 = k_1 + k_2 + k_3 \Rightarrow \mathsf{PRF}_{k_0}(l) = \mathsf{PRF}_{k_1}(l) + \mathsf{PRF}_{k_2}(l) + \mathsf{PRF}_{k_3}(l)$$

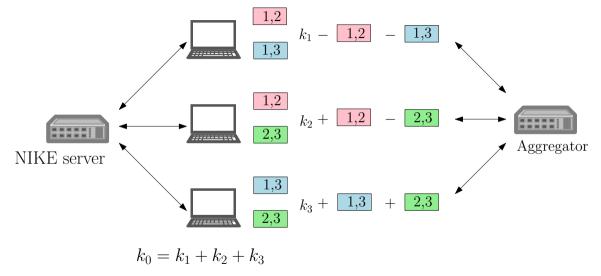
$$k_0 = k_1 + k_2 + k_3 \Rightarrow \mathsf{PRF}_{k_0}(l) = \mathsf{PRF}_{k_1}(l) + \mathsf{PRF}_{k_2}(l) + \mathsf{PRF}_{k_3}(l)$$

$$k_0 = k_1 + k_2 + k_3 \Rightarrow \mathsf{PRF}_{k_0}(l) = \mathsf{PRF}_{k_1}(l) + \mathsf{PRF}_{k_2}(l) + \mathsf{PRF}_{k_3}(l)$$



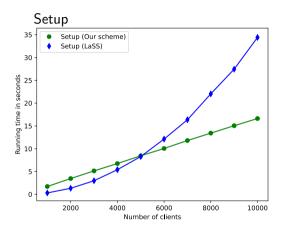

$$k_0 = k_1 + k_2 + k_3$$

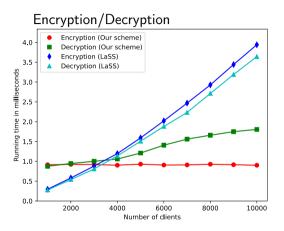

$$k_0 = k_1 + k_2 + k_3$$



$$k_0 = k_1 + k_2 + k_3$$

Implementation


- Written in Go (source code on https://github.com/johanernst/khPRF-PSA)
- PRF based on LWR, secure in ROM


•
$$k \in \mathbb{Z}_q^{2096}$$
, $H \colon \mathcal{L} \to \mathbb{Z}_q^{2096}$, $q = 2^{128}$, $p = 2^{85}$

▶
$$\mathsf{PRF}_k(\ell) := \lfloor \langle H(\ell), k \rangle \rfloor_p \in \mathbb{Z}_p \ ([\mathsf{Bon}{+}13])$$

- ► For *H* we use 524 calls to SHA3-512
- Key-size: \approx 268 KBit
- Message-size: 85 Bit
- ullet 114 bit security for message space of size 2^{64} and 2^{20} users

Performance in Practice

LaSS: Waldner et al. [Wal+21]

Results and Limitations

- Properties of new scheme:
 - supports labels, secure under adaptive corruptions
 - ▶ secure in the standard model (when instantiated with PRF from [Bon+13] or [BP14])
 - small ciphertexts, fast encryption and decryption
- Limitations:
 - implementation (so far) only in ROM
 - encrypt-once restriction