| I 1 W Universie - @

INSTITUT
DE RECHERCHE

EN INFORMATIQUE ’: o
FONDAMENTALE ?A. University of St.Gallen

LaPSusS: A Lattice-Based PSA Scheme under Scrutiny

SCN 2024, International Conference on Security and Cryptography for Networks
Johannes Ottenhues (Univ. St. Gallen), Alexander Koch (IRIF, Univ. Paris Cité, CNRS) | 2024-09-11

2

Private Stream Aggregation (PSA)

Setting: Each client has a sensor, producing a private value x; €Zq

xqf“. 93 gﬂ 0.)a

What is Z X;?

ie[n]

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Private Stream Aggregation (PSA)

Setting: Each client has a sensor, producing a private value x; , € Zq at time step ¢

' - (o360

Oaa O0sa o0f) o.a

X1,0 X2.¢ X3.0 X4,0

What is Z xi, for a given time step (?

ie[n]

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Private Stream Aggregation (PSA)

Setting: Each client has a sensor, producing a private value x; , € Zq at time step ¢

Oaa Osa o0f) o.a

X1,0 X2.¢ X3.0 X4,0

What is Z xi, for a given time step (?

ie[n]

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Private Stream Aggregation (PSA)

Setting: Each client has a sensor, producing a private value x; , € Zq at time step ¢

Oaa Osa o0f) o.a

e |1

IS

Aggregator

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

2

Private Stream Aggregation (PSA)

PSA: A 3-tuple of efficient algorithms (Setup, Enc, AggrDec)

(PP, (Ki)ien),) < Setup(1*,1")

K—%\%*

Qaa

os [0f] 0.

Ko

s
L]
e

Aggregator

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1

J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Private Stream Aggregation (PSA)

PSA: A 3-tuple of efficient algorithms (Setup, Enc, AggrDec)

@ oF o ctio + Enc(ki, £, Xir)
GAL G 1 1 Gi?.
X2.¢ X3¢
TR i
X1, ﬁ\ 4 ks | Xq.0

’m\;
ki) Joee ::/

="

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Private Stream Aggregation (PSA)

PSA: A 3-tuple of efficient algorithms (Setup, Enc, AggrDec)

e @ e eﬂ e o ctio + Enc(ki, £, Xir)
o
.\—| N —(.

X § X
”m\f = kel M
ki et ki
[t =N

="

yﬂﬂn := AggrDec(ko, £, (Ctir)ien)) = Dieln) X

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

2

Private Stream Aggregation (PSA)

A note on inherent leakage if you get more than one ct per client and label:

" %5 e v t Enc(ki, ¢, Xi)
Gnt G Oﬂ Oum '

ctf, « Enc(ki, £, x!)
X2.4 ' ’
ﬂ*\ H

xuﬂ\ |m ks —H xum
k s X1 k
1| e <«——— [ﬂl 4|

— ks

[t
e
& Connc!
Learns AggrDec(ko, ¢, (cti¢)i) = AggrDec(ko, ¢, (cty ¢, Cta g, ctg,g,ctﬁw)) = X4,0 — x{u
Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3

Security Notion: Aggregator Obliviousness (AO)

Attacker gets pp and oracles: QENnc(i, x;, ¢), QCorrupt(i), QChallenge (U, (X?)icus, (X)icu, £*)

(PP, (Ki)ien),) < Setup(1*,1")
N{

PN 2 4.m Ak

Attacker

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3

Security Notion: Aggregator Obliviousness (AO)

Attacker gets pp and oracles: QENnc(i, x;, /), QCorrupt(i), QChallenge (U, (X?)icus, (X)icu, £*)

QENCc(3,x,¥)
an QA 4m Ak
Attacker
s
tih - X
(== k3|

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3

Security Notion: Aggregator Obliviousness (AO)

Attacker gets pp and oracles: QENnc(i, x;, ¢), QCorrupt(i), QChallenge (U, (X?)icus, (X icu, £*)

QCorrupt(1)

e
(~

PRy
Attacker

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3

Security Notion: Aggregator Obliviousness (AO)

Attacker gets pp and oracles: QENnc(i, x;, ¢), QCorrupt(i), QChallenge (U, (X?)icus, (X icu, £*)

QCorrupt(0

Attacker

1 ke

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Security Notion: Aggregator Obliviousness (AO)

Attacker gets pp and oracles: QEnc(i, x;, ¢), QCorrupt(i), QChallenge(U, (x")ics, (X!)icus, £7)

| |
b
QChallenge (U, (x9, x9), (x3,x3), ¢*)
e x5 / X3 (only o2ncg!) o

Q0 Q0O

b« {0,1}

U Attacker

e \ Xgﬁ|ﬁ—i§ﬂ|/
= ke | ks|

Image “server multiple” by RRZE, CC BY-SA 3.0

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Security Notion: Aggregator Obliviousness (AO)

Aim of the attacker: Guess bit b.

b« {0,1} Attacker Rules

Keep U disjoint from
{corrupted} =:CS!

If you corrupted the
aggregator and W
g U, CS, and the set of “

users from whlf:h you Attacker
got an encryption for

£* covers everyone,

enforce 3" x? = Y x}

~. or you loose!

&

Image “server multiple” by RRZE, CC BY-SA 3.0

3 2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

3

Security Notion: Aggregator Obliviousness (AO)

Aim of the attacker: Guess bit b.

Encrypt-Once-Rules

e Don’t ask for more
than one encryption
per user and label.

e This includes the
challenge query!

Attacker Rules

* Keep U disjoint from
{corrupted} =:CS!

e If you corrupted the
aggregator and
U, CS, and the set of
users from which you
got an encryption for
£* covers everyone,
enforce 3" x? = Y x}

... or you loose!

[— [4

Image “server multiple” by RRZE, CC BY-SA 3.0

Attacker

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://raw.githubusercontent.com/RRZE-PP/rrze-icon-set/master/tango/scalable/devices/server-multiple.svg
https://rrze-pp.github.io/rrze-icon-set/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

LaPS Scheme (Becker et al., NDSS 2018)

* (Gengn, ENncan, Decyy): additively homomorphic PKE with pseudorandom ciphertexts.
+ G: gadget matrix, i.e. G =1® (12 ... 2971), with d = O([logq])
* e« Dpi(q),0: error distribution (with o > 2v/\); defined so that G-emod g = v

Assumption: “Augmented LWE” (El Bansarkhani et al.): additionally hides message x inside
error-term of LWE sample, via: encode x into pseudorandom v, sample e from Dirr(a)o

Setup(1*,1"): Enc(pp, ki, xi): AggrDec(pp, ko, (Cti)ieim) :

A ZéXd parse pp = (A, pkan) parse Ko = (SKan, K)

for i€ [n]: ki Za vi < Encan(pKan, Xi) e= Zie[n]ci —kTA

(PKah, SKan) < Genah(l*) e < DA‘%‘,(G),U return Decyn(Skan, G - € mod Q)
pp = (A, pkan) cti=k! A+e' modq

ko = (Skathie[n]ki) return Ct;

return (PP, (Ki)ieinl,)

4 2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

5

First Attack on LaPS using two Ciphertexts of a Client

Given two encryptions ctj and ct{ of x; and x/ and ko = (skan, k).
cti—ct/ =k A+e' —k'A+e/ " modg=-¢e' —e/" modq.

Then:
G(e' —e/") mod g = vi — v/ mod Q.

We can then decrypt to get

Decan(SKan, vi — vi mod q) = Decan(SKan, vi) — Decan(Skan, vi)
= X; — X{ mod Q.

This is without knowing any other ciphertexts, i.e. goes beyond inherent leakage.

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

5

First Attack on LaPS using two Ciphertexts of a Client

Given two encryptions ctj and ct{ of x; and x/ and ko = (skan, k).
cti—ct/ =k A+e' —k'A+e/" modg=¢e —e/" mod q.

Then:
G(e! —€e/")mod g=v; — v/ mod q.

We can then decrypt to get

Decan(SKan, vi — vi mod q) = Decan(SKan, vi) — Decan(Skan, vi)
= Xj — xi/ mod q.

This is without knowing any other ciphertexts, i.e. goes beyond inherent leakage.

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

6

A Problem with the Proof of LaPS: Removing QEnc

Shi et al. (p. 15):

LaPS (Becker et al., p. 16):

Proof of Theorem 1: First, we will make a small
modification to the aggregator oblivious security game.
In the Encrypt queries, if the adversary submits a re-
quest for some tuple (4, z,t*) where ¢* is the time step
specified in the Challenge phase, the challenger treats
this as a Compromise query, and simply returns the sk;
to the adversary. Given sk;, the adversary can compute
the requested ciphertext herself. Therefore, this modifi-
cation actually gives more power to the adversary. From
now on, we will assume that the adversary does not
make any Encrypt queries for the time ¢*.

We define the following intermediate game Game similar
to [40] that is indistinguishable from the aggregator oblivi-
ousness security game according to Definition |§| First, we
treat any Encrypt query as a Compromise query from the
adversary. Clearly, this turns the adversary actually more

powerful. Secondly, we change the Challenge phase to its real-

Problem Intuition: Corruptions lead to stricter conditions on what is allowed: corrupted
users cannot be included in U, but those from which we queried an encryption (for ¢ #£ ¢* if
encrypt-once) can be. Hence, LaPS is shown only to be “corruption-only-AO-secure”.

2024-09-1

J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

7

How Weak is corruption-only-AO Security?

The following “trivial” PSA scheme is (perfectly) corruption-only-AO secure:!

Setup(1*,1"): Enc(pp, ki, xi,£):
for i € [n]: ki + Zq return X; + K;
ko = =2 icin ki

AggrDec(pp, ko, £, (Cti)ie[n)) :
return Y jcti+ko

pp = g (the modulus)
return (PP, (Ki)iem,)

ie[n

Intuition: The adversary cannot get anyone to use their OTP key twice (/ NCS = 0)

Problem: In practice, a PSA setup is supposed to be used for more than one use per party.
Hence, security guarantees are very weak.

Also: The scheme is not AO-secure.

This was already mentioned in a footnote in Waldner et al. (2021)

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

7

How Weak is corruption-only-AO Security?

The following “trivial” PSA scheme is (perfectly) corruption-only-AO secure:!

Setup(1*,1"): Enc(pp, ki, xi,£):
for i € [n]: ki + Zq return X; + K;
ko = =2 icin ki

AggrDec(pp, ko, £, (Cti)ie[n)) :
return Y jcti+ko

pp = g (the modulus)
return (PP, (Ki)iem,)

ie[n

Intuition: The adversary cannot get anyone to use their OTP key twice (/ NCS = 0)

Problem: In practice, a PSA setup is supposed to be used for more than one use per party.
Hence, security guarantees are very weak.
Also: The scheme is not AO-secure.
Intuition: Using QEnc(i*,x = 0,¢) you get ki« = ki + 0 without corrupting.
This was already mentioned in a footnote in Waldner et al. (2021)

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

Key Recovery Attack on LaPS using Averaging

* (Gengn, Encan, Decyy): additively homomorphic PKE with pseudorandom ciphertexts.
+ G: gadget matrix, i.e. G =1® (12 ... 2971), with d = O([logq])
* e« Dpi(q),0: error distribution (with o > 2v/\); defined so that G-emod g = v

Note: Each Enc(pp, ki, Xj) uses same A and k;.
Attack: Run QEnc many (poly(})) times to average out the error.

Setup(1*,1M): Enc(pp, ki, Xi): AggrDec(pp, ko, (Cti)ien)) :

A ZQXd parse PP = (A, PKan) parse Ko = (Skan, k)

for i€ [n]: ki « Zé vi + Encan(pKan, Xi) e = Zie[n]ci —kTA

(PKan, SKan) < Genan(1*) e DAé‘(G),cf return DecCan(SKan, G - € mod Q)
pp = (A, pkan) cty = kiTA + eiT mod q

ko == (sKah, Zie[n]ki) return Ct;

return (PP, (Ki)ie[m,)

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

9

Another Proof Problem: Changing to Real-or-Random

The proof switches to a Real-or-Random (RoR)
variant of the AO-game without really defining
it. And, doing it naively leads to a potentially
weaker definition.

Main Issue: How should the random x; be
chosen? In AQ, the attacker can determine
adaptively whether the balance condition needs
to hold, here this is not possible.

Way out: Define RoR-AO by giving a choice
bsum in QChallenge on whether the randomness
should add up to the same value as the provided
x;’'s. We show this to be equivalent to AO.

2024-09-1

LaPS (Becker et al., p. 16):

We define the following intermediate game Game similar
to [40] that is indistinguishable from the aggregator oblivi-
ousness security game according to Definition First, we
treat any Encrypt query as a Compromise query from the
adversary. Clearly, this turns the adversary actually more
powerful. Secondly, we change the Challenge phase to its real-
or-random version, i.e. instead of having the adversary specify
two sets of plaintext-randomness pairs {(d;,r;)} and {(d},7})}
and have her distinguish between encryptions of either one,
we let the adversary pick one set {(d;,r;)} and have her
distinguish between a set of valid encryptions and a set of
random values in Z::. It is straightforward that any adversary
with more than negligible advantage in winning Game will
also win the aggregator obliviousness security game with more
than negligible advantage. Therefore, it suffices to show that

J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

Summary and Discussion

Summary:

@ The LaPS scheme (NDSS 2018) was the first with claimed post-quantum and
encrypt-multiple times security, and subsequently patented.

@ However, the proof contains at least two shaky/wrong steps
© There are attacks that let you recover differences of their messages and the user’s keys.

@ Importantly: First mention of problems was in a remark in Waldner et al. (ePrint 2021)
and the proof mistakes have also spread to other papers.

Main Takeaway/Discussion:
@ Getting all the details of a security proof right is hard, but crucial.
@ Maybe: avoid putting the main proof in the appendix.

10 2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

n

References

B

Elaine Shi, T.-H. Hubert Chan, Eleanor Gilbert Rieffel, Richard Chow, and Dawn Song.
“Privacy-Preserving Aggregation of Time-Series Data”. In: NDSS 2011. The Internet
Society, 2071. URL: https://www.ndss-symposium.org/ndss2011/privacy-preserving-
aggregation-of-time-series-data.

Rachid El Bansarkhani, Ozgur Dagdelen, and Johannes Buchmann. “Augmented
learning with errors: The untapped potential of the error term”. In: FC 2015. Springer.
2015, pp. 333-352. DOI: 10.1007/978-3-662-47854-7_20.

Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann. “Revisiting Private
Stream Aggregation: Lattice-Based PSA.”. In: NDSS 2018. The Internet Society, 2018.
URL: https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_02B-
3_Becker_paper.pdf.

Hendrik Waldner, Tilen Marc, Miha Stopar, and Michel Abdalla. Private Stream
Aggregation from Labeled Secret Sharing Schemes. Cryptology ePrint Archive,
Report 2021/081.

2024-09-1 J. Ottenhues, A. Koch: LaPSuS - A Lattice-Based Private Stream Aggregation Scheme under Scrutiny

https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://doi.org/10.1007/978-3-662-47854-7_20
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_02B-3_Becker_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_02B-3_Becker_paper.pdf
https://eprint.iacr.org/2021/081

	References

